Advertisement

Investigation of the properties of nanostructured nickel oxide NiO thin films irradiated at different γ-doses

  • Faycal ChandoulEmail author
  • Hatem Moussa
  • Karima Jouini
  • Abdelwaheb Boukhachem
  • Faouzi Hosni
  • Mohamed Slim Fayache
  • Raphaël Schneider
Article
  • 73 Downloads

Abstract

Nanostructured thin films of Nickel oxide NiO were synthesized using spray coating method. The samples were irradiated at different γ-doses by Co-60 radioisotope. The obtained films were studied using X-ray diffraction (XRD), scanning electron microscopy, UV–visible spectrophotometry, Raman spectroscopy, photoluminescence (PL) spectroscopy and FT-IR. The experimental results demonstrated that the irradiation of NiO led to significant changes. XRD and Raman spectroscopy demonstrate that the as-deposited NiO samples show a cubic structure with (111) preferred orientation common at all gamma radiation doses. The optical energy gaps of the samples were found to decrease when increasing the γ ray dose, the Eg value decreases from 3.84 eV for as deposited NiO thin film to 3.60 eV for sample irradiated at 50 kGy. Scanning electron microscope (SEM) image of sprayed NiO films shows the high porosity and the presence of microcavities in surface of films.

Notes

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Republic of Tunisia.

References

  1. 1.
    R. Barir, B. Benhaoua, S. Benhamida et al., Effect of precursor concentration on structural optical and electrical properties of NiO thin films prepared by spray pyrolysis. J. Nanomater. 2017, 1–10 (2017).  https://doi.org/10.1155/2017/5204639 Google Scholar
  2. 2.
    I. Sta, M. Jlassi, M. Kandyla et al., Surface functionalization of sol-gel grown NiO thin films with palladium nanoparticles for hydrogen sensing. Int. J. Hydrogen Energy 41, 3291–3298 (2016).  https://doi.org/10.1016/j.ijhydene.2015.12.109 Google Scholar
  3. 3.
    Z. Hu, D. Chen, P. Yang et al., Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Appl. Surf. Sci. 441, 258–264 (2018).  https://doi.org/10.1016/j.apsusc.2018.01.236 Google Scholar
  4. 4.
    W. Chia-ching, Y. Cheng-fu (2013) Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method. Nanoscale Res. Lett. 8, 33Google Scholar
  5. 5.
    M.M. Uplane, S.H. Mujawar, A.I. Inamdar et al., Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide. Appl. Surf. Sci. 253, 9365–9371 (2007).  https://doi.org/10.1016/j.apsusc.2007.05.069 Google Scholar
  6. 6.
    N. Duraisamy, A. Numan, K. Ramesh et al., Investigation on structural and electrochemical properties of binder free nanostructured nickel oxide thin film. Mater. Lett. 161, 694–697 (2015).  https://doi.org/10.1016/j.matlet.2015.09.059 Google Scholar
  7. 7.
    J. Keraudy, J. García Molleja, A. Ferrec et al., Structural, morphological and electrical properties of nickel oxide thin films deposited by reactive sputtering. Appl. Surf. Sci. 357, 838–844 (2015).  https://doi.org/10.1016/j.apsusc.2015.08.199 Google Scholar
  8. 8.
    H.L. Chen, Y.M. Lu, W.S. Hwang, Characterization of sputtered NiO thin films. Surf. Coat. Technol. 198, 138–142 (2005).  https://doi.org/10.1016/j.surfcoat.2004.10.032 Google Scholar
  9. 9.
    M.F. Al-Kuhaili, S.H.A. Ahmad, S.M.A. Durrani et al., Application of nickel oxide thin films in NiO/Ag multilayer energy-efficient coatings. Mater. Sci. Semicond. Process. 39, 84–89 (2015).  https://doi.org/10.1016/j.mssp.2015.04.049 Google Scholar
  10. 10.
    Y. Akaltun, T. Çayir, Fabrication and characterization of NiO thin films prepared by SILAR method. J. Alloy. Compd. 625, 144–148 (2015).  https://doi.org/10.1016/j.jallcom.2014.10.194 Google Scholar
  11. 11.
    M. Patel, J. Kim, Transparent NiO/ZnO heterojunction for ultra-performing zero-bias ultraviolet photodetector on plastic substrate. J. Alloy. Compd. 729, 796–801 (2017).  https://doi.org/10.1016/j.jallcom.2017.09.158 Google Scholar
  12. 12.
    Y. Liu, G. Li, R. Mi et al., An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis. Sens. Actuators B 191, 537–544 (2014).  https://doi.org/10.1016/j.snb.2013.10.068 Google Scholar
  13. 13.
    S. Thamri, I. Sta, M. Jlassi et al., Fabrication of ZnO-NiO nanocomposite thin films and experimental study of the effect of the NiO, ZnO concentration on its physical properties. Mater. Sci. Semicond. Process. 71, 310–320 (2017).  https://doi.org/10.1016/j.mssp.2017.08.017 Google Scholar
  14. 14.
    C. Chen, et al., Porous NiO/graphene composite thin films as high performance anodes for lithium-ion batteries. J. Energy Storage. 8, 198–204Google Scholar
  15. 15.
    M. Kaur, B.K. Dadhich, R. Singh et al., RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature. Sens. Actuators B 242, 389–403 (2017).  https://doi.org/10.1016/j.snb.2016.11.054 Google Scholar
  16. 16.
    H. Sun, S.C. Chen, P.J. Chen et al., P-type conductive NiOx: Cu thin films with high carrier mobility deposited by ion beam assisted deposition. Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.11.103 Google Scholar
  17. 17.
    A.M. Soleimanpour, A.H. Jayatissa, G. Sumanasekera, Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 276, 291–297 (2013).  https://doi.org/10.1016/j.apsusc.2013.03.085 Google Scholar
  18. 18.
    M. Predanocy, I. Hotový, M. Čaplovičová, Structural, optical and electrical properties of sputtered NiO thin films for gas detection. Appl. Surf. Sci. 395, 208–213 (2017).  https://doi.org/10.1016/j.apsusc.2016.05.028 Google Scholar
  19. 19.
    J. Wang, P. Yang, X. Wei, Z. Zhou, Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection. Nanoscale Res. Lett. 10, 1–6 (2015).  https://doi.org/10.1186/s11671-015-0807-5 Google Scholar
  20. 20.
    Qi X, Su G, Bo G, et al (2015) Synthesis of NiO and NiO/TiO < inf> 2</inf> films with electrochromic and photocatalytic activities. Surf. Coat. Technol. 272:79–85.  https://doi.org/10.1016/j.surfcoat.2015.04.020 Google Scholar
  21. 21.
    F.I. Dar, K.R. Moonooswamy, M. Es-Souni, Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 8, 1–7 (2013).  https://doi.org/10.1186/1556-276X-8-363 Google Scholar
  22. 22.
    Y. Zhang, S. Wang, L. Chen et al., Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer. Org. Electron. 44, 189–197 (2017).  https://doi.org/10.1016/j.orgel.2017.02.023 Google Scholar
  23. 23.
    R.S. Kate, S.A. Khalate, R.J. Deokate, Electrochemical properties of spray deposited nickel oxide (NiO) thin films for energy storage systems. J. Anal. Appl. Pyrol. 125, 289–295 (2017).  https://doi.org/10.1016/j.jaap.2017.03.014 Google Scholar
  24. 24.
    F. Chandoul, A. Boukhachem, F. Hosni et al., Change of the properties of nanostructured MoO3thin films using gamma-ray irradiation. Ceram. Int. 44, 12483–12490 (2018).  https://doi.org/10.1016/j.ceramint.2018.04.040 Google Scholar
  25. 25.
    P.S. Patil, L.D. Kadam, Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl. Surf. Sci. 199, 211–221 (2002).  https://doi.org/10.1016/S0169-4332(02)00839-5 Google Scholar
  26. 26.
    K.O. Ukoba, A.C. Eloka-Eboka, F.L. Inambao (2017) Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew. Sustain. Energy Rev. 0–1.  https://doi.org/10.1016/j.rser.2017.10.041
  27. 27.
    M. Shkir, V. Ganesh, S. AlFaify et al., Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+doping. J. Mater. Sci.: Mater. Electron. 0, 6446–6457 (2018).  https://doi.org/10.1007/s10854-018-8626-y Google Scholar
  28. 28.
    E. Turgut, Ö Çoban, S. Sarıtaş et al., Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Appl. Surf. Sci. 435, 880–885 (2018).  https://doi.org/10.1016/j.apsusc.2017.11.133 Google Scholar
  29. 29.
    P. Ravikumar, D. Taparia, P. Alagarsamy, Thickness-dependent thermal oxidation of Ni into NiO thin films. J. Supercond. Novel Magn. 1–15 (2018).  https://doi.org/10.1007/s10948-018-4651-6 Google Scholar
  30. 30.
    M. Ravikumar, R. Chandramohan, K.D.A. Kumar et al., Effect of Gd3 + doping on key structural, morphological, optical, and electrical properties of CdO thin films fabricated by spray pyrolysis using perfume atomizer. J. Sol-Gel. Sci. Technol. (2017).  https://doi.org/10.1007/s10971-017-4528-3 Google Scholar
  31. 31.
    S.A. Khalate, R.S. Kate, H.M. Pathan, R.J. Deokate (2017) Structural and electrochemical properties of spray deposited molybdenum trioxide (??-MoO3) thin films. J. Solid State Electrochem. 1–10.  https://doi.org/10.1007/s10008-017-3540-4
  32. 32.
    S.E. Materials, E. Studies (1988) ZI. Undoped SnOz films. 17:99–117Google Scholar
  33. 33.
    M. Ben Amor, A. Boukhachem, A. Labidi et al., Physical investigations on Cd doped NiO thin films along with ethanol sensing at relatively low temperature. J. Alloy. Compd. 693, 490–499 (2017).  https://doi.org/10.1016/j.jallcom.2016.09.207 Google Scholar
  34. 34.
    G. Umadevi (2018) Concentration dependent structural, morphological, spectral, optical and electrical properties of spray pyrolyzed NiO thin films. Silicon 10, 2023–2029Google Scholar
  35. 35.
    C. Mrabet, M. Ben Amor, A. Boukhachem et al., Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram. Int. (2015).  https://doi.org/10.1016/j.ceramint.2015.12.144 Google Scholar
  36. 36.
    A. Boukhachem, M. Mokhtari, N. Benameur et al., Structural optical magnetic properties of Co doped α-MoO3 sprayed thin films. Sens. Actuators A 253, 198–209 (2017).  https://doi.org/10.1016/j.sna.2016.11.032 Google Scholar
  37. 37.
    D. İskenderoğlu, H. Güney, Synthesis and characterization of ZnO:Ni thin films grown by spray-deposition. Ceram. Int. 43, 16593–16599 (2017).  https://doi.org/10.1016/j.ceramint.2017.09.047 Google Scholar
  38. 38.
    A.C. Anithaa, K. Asokan, C. Sekar, Highly sensitive and selective serotonin sensor based on gamma ray irradiated tungsten trioxide nanoparticles. Sens. Actuators B 238, 667–675 (2017).  https://doi.org/10.1016/j.snb.2016.07.098 Google Scholar
  39. 39.
    A. Alyamani, N. Mustapha, Effects of high dose gamma irradiation on ITO thin film properties. Thin Solid Films 611, 27–32 (2016).  https://doi.org/10.1016/j.tsf.2016.05.022 Google Scholar
  40. 40.
    A. Mhamdi, R. Mimouni, A. Amlouk et al., Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films. J. Alloy. Compd. 610, 250–257 (2014).  https://doi.org/10.1016/j.jallcom.2014.04.007 Google Scholar
  41. 41.
    U. Canci Matur, N. Baydogan, Changes in gamma attenuation behaviour of sol-gel derived CIGS thin film irradiated using Co-60 radioisotope. J. Alloy. Compd. 695, 1405–1413 (2017).  https://doi.org/10.1016/j.jallcom.2016.10.265 Google Scholar
  42. 42.
    X. Chen, L. Zhao, Q. Niu, Electrical and optical properties of p-type Li,Cu-codoped NiO thin films. J. Electron. Mater. 41, 3382–3386 (2012).  https://doi.org/10.1007/s11664-012-2213-4 Google Scholar
  43. 43.
    N.A. Noor Azmy, A.A. Ahmad, N. Arsad et al., Enhancement of ZnO-rGO nanocomposite thin films by gamma radiation for E. coli sensor. Appl. Surf. Sci. 392, 1134–1143 (2017).  https://doi.org/10.1016/j.apsusc.2016.09.144 Google Scholar
  44. 44.
    M.M. El-Nahass, H.A. Zayed, E.E. Elgarhy, A.M. Hassanien, Effect of γ- irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin thin films. Radiat. Phys. Chem. 139, 173–178 (2017).  https://doi.org/10.1016/j.radphyschem.2017.05.008 Google Scholar
  45. 45.
    A.A.A. Darwish, S.A.M. Issa, M.M. El-Nahass, Effect of gamma irradiation on structural, electrical and optical properties of nanostructure thin films of nickel phthalocyanine. Synth. Met. 215, 200–206 (2016).  https://doi.org/10.1016/j.synthmet.2016.03.002 Google Scholar
  46. 46.
    B.N.F. Mott, E. Processes, N.M. Clarendon-press, N. Stoffe (1972) I 7 i 4 i 1972 1. 55–56Google Scholar
  47. 47.
    Z. Wang, L. Cheng, Gamma ray irradiation-induced variations in structure and optical properties of cerium/titanium-doped oxyfluoride transparent glass-ceramics. Mater. Res. Bull. 92, 104–112 (2017).  https://doi.org/10.1016/j.materresbull.2017.04.010 Google Scholar
  48. 48.
    F.R.T. Rlini (1953) Optical properties of thin films of cadmium sulfide. JOSA 44:1953–1955Google Scholar
  49. 49.
    M.M. Gomaa, G.R. Yazdi, S. Schmidt et al., Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films. Mater. Sci. Semicond. Process. 64, 32–38 (2017).  https://doi.org/10.1016/j.mssp.2017.03.009 Google Scholar
  50. 50.
    S. Mochizuki, T. Saito, Intrinsic and defect-related luminescence of NiO. Physica B 404, 4850–4853 (2009).  https://doi.org/10.1016/j.physb.2009.08.166 Google Scholar
  51. 51.
    A. Loukil, A. Boukhachem, M. Ben Amor et al. (2015) Effects of potassium incorporation on the structural, optical, vibrational and electrical properties of NiO sprayed thin films for p-type optical windows. Ceram. Int. 1–16.  https://doi.org/10.1016/j.ceramint.2016.02.040
  52. 52.
    L.W. Hobbs, A.N. Sreeram, C.E. Jesurum, B.A. Berger, Structural freedom, topological disorder, and the irradiation-induced amorphization of ceramic structures. Nucl Instrum Methods. Phys. Res. Sect. B 116, 18–25 (1996).  https://doi.org/10.1016/0168-583X(96)00004-3 Google Scholar
  53. 53.
    F. Piao, W.G. Oldham, E.E. Haller, Mechanism of radiation-induced compaction in vitreous silica. J. Non-Cryst. Solids 276, 61–71 (2000).  https://doi.org/10.1016/S0022-3093(00)00263-5 Google Scholar
  54. 54.
    H. Wang, H. Yi, X. Chen, X. Wang, Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim. Acta 105, 353–361 (2013).  https://doi.org/10.1016/j.electacta.2013.05.031 Google Scholar
  55. 55.
    S.S. Nkosi, B. Yalisi, D.E. Motaung et al., Antiferromagnetic-paramagnetic state transition of NiO synthesized by pulsed laser deposition. Appl. Surf. Sci. 265, 860–864 (2013).  https://doi.org/10.1016/j.apsusc.2012.11.134 Google Scholar
  56. 56.
    S.-H. Lee, H.M. Cheong, N.-G. Park et al., Raman spectroscopic studies of Ni–W oxide thin films. Solid State Ionics 140, 135–139 (2001).  https://doi.org/10.1016/S0167-2738(01)00707-X Google Scholar
  57. 57.
    V. Panneerselvam, K. Kumar, C. Shyju et al., Role of copper / vanadium on the optoelectronic properties of reactive RF magnetron sputtered NiO thin films. Appl. Nanosci. 0, 0 (2018).  https://doi.org/10.1007/s13204-018-0784-y Google Scholar
  58. 58.
    X. Luo, L.T. Tseng, S. Li, J.B. Yi, Room temperature ferromagnetic ordering of NiO films through exchange coupling. Mater. Sci. Semicond. Process. 30, 228–232 (2015).  https://doi.org/10.1016/j.mssp.2014.10.009 Google Scholar
  59. 59.
    I.G. Madiba, N. Émond, M. Chaker et al. (2017) Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films. Appl. Surf. Sci. 411:.  https://doi.org/10.1016/j.apsusc.2017.03.131
  60. 60.
    R. Kumar, C. Baratto, G. Faglia et al., Tailoring the textured surface of porous nanostructured NiO thin films for the detection of pollutant gases. Thin Solid Films 583, 233–238 (2015).  https://doi.org/10.1016/j.tsf.2015.04.004 Google Scholar
  61. 61.
    R.E. Dietz, G.I. Parisot, A.E. Meixner, Infrared absorption and Raman scattering by two-magnon processes in NiO. J. Appl. Phys. 42, 1484 (1971).  https://doi.org/10.1063/1.1660309 Google Scholar
  62. 62.
    X. Yang, W. Liu, G. Pan, Y. Sun, Materials modulation of oxygen in NiO: Cu films toward a physical insight of NiO : Cu / c-Si heterojunction solar cells. J. Mater. Sci. doi (2018).  https://doi.org/10.1007/s10853-018-2430-1 Google Scholar
  63. 63.
    K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Structural, optical and electrical properties of gamma irradiated SnO thin films. Radiat. Phys. Chem. 91, 35–39 (2013).  https://doi.org/10.1016/j.radphyschem.2013.05.030 Google Scholar
  64. 64.
    X.H. Huang, J.P. Tu, X.H. Xia et al., Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem. Commun. 10, 1288–1290 (2008).  https://doi.org/10.1016/j.elecom.2008.06.020 Google Scholar
  65. 65.
    S. Jana, S. Samai, B.C. Mitra et al., Nickel oxide thin film from electrodeposited nickel sulfide thin film: peroxide sensing and photo-decomposition of phenol. Dalton Trans. 43, 13096 (2014).  https://doi.org/10.1039/C4DT01658K Google Scholar
  66. 66.
    A.C. Sonavane, A.I. Inamdar, P.S. Shinde et al., Efficient electrochromic nickel oxide thin films by electrodeposition. J. Alloy. Compd. 489, 667–673 (2010).  https://doi.org/10.1016/j.jallcom.2009.09.146 Google Scholar
  67. 67.
    M.M. Gomaa, M. Boshta, B.S. Farag, M.B.S. Osman, Structural and optical properties of nickel oxide thin films prepared by chemical bath deposition and by spray pyrolysis techniques. J. Mater. Sci.: Mater. Electron. 27, 711–717 (2016).  https://doi.org/10.1007/s10854-015-3807-4 Google Scholar
  68. 68.
    M.R. Das, A. Mukherjee, P. Mitra, Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD. J. Mater. Sci.: Mater. Electron. 29, 1216–1231 (2018).  https://doi.org/10.1007/s10854-017-8024-x Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematical, Physical and Natural Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Laboratory on Energy and Matter for Nuclear Sciences DevelopmentCNSTNSidi-ThabetTunisia
  3. 3.Unity of Physics of Semiconductor Devices (UPDS)Faculty of Sciences of TunisTunisTunisia
  4. 4.Laboratoire Réactions et Génie des Procédés, LRGP, UMR 7274, CNRSUniversité de LorraineNancy CedexFrance

Personalised recommendations