Thermal and mechanical properties of micro Cu doped Sn58Bi solder paste for attaching LED lamps

  • Hao Zhang
  • Fenglian SunEmail author
  • Yang Liu


The junction temperature is a key factor in determining the reliability of light emitting diode (LED) package, which can be lowered using high thermal conductive soldering material. The effects of Cu micro particles on the thermal and mechanical properties as well as microstructures of Sn58Bi solder paste were investigated in this paper. The results indicated that the thermal conductivity of Sn58Bi-5 wt% Cu solder layer is 26.60 W/(m·K), which is much higher than the Sn58Bi solder layer of 18.89 W/(m·K). According to the thermal simulation analysis, the temperature on chip is the highest area inside the whole LED package. The maximum junction temperature of soldered LED package decreases with 5 wt% Cu particles addition and then increases. The maximum junction temperature of LED package increases as the input power increases from 1 to 3 W. The lowest junction temperature is obtained in Sn58Bi-5 wt% Cu soldered package. There is no significant degradation in shear strength of 5 wt% Cu micro particles doped Sn58Bi solder joint when comparing with the pure Sn58Bi soldered ones. The shear strength of solder joint decreases approximately 50% when the content of added Cu micro particles increases from 5 to 15 wt%, and weak bonding presents in 20 wt% Cu doped solder joint. Comparing with the Sn58Bi solder, the solder layer with 5 wt% Cu micro particles exhibited more uniform microstructure and the number of coarse Bi-rich phases is reduced. The Cu micro particles facilitate the heat dissipation process of Sn58Bi solder layer by adding highly conductive cores in the layer. The 5 wt% Cu micro particles doped Sn58Bi solder exhibits remarkable thermal and mechanical performance in attaching LED packages.



The work described in this paper was supported by the National Natural Science Foundation of China (51174069).


  1. 1.
    H. Lin, T. Hu, Y. Cheng, M. Chen, Y. Wang, Laser Photonics Rev. 12(6), 1700344 (2018)CrossRefGoogle Scholar
  2. 2.
    D.K. Lee, J.M. Lee, M.U. Cho, H.J. Park, Y.J. Cha, H.J. Kim, J.S. Kwak, J. Nanosci. Nanotechnol. 18(9), 5904 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, J. Zhao, C.C.A. Yuan, G.Q. Zhang, F. Sun, IEEE Trans. Comp. Pack. Man. 4(11), 1754 (2014)Google Scholar
  4. 4.
    J. Huang, D.S. Golubović, S. Koh, D. Yang, X. Li, X. Fan, G.Q. Zhang, Reliab. Eng. Syst. Safe. 154, 152 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Fan, M. Zhang, X. Luo, C. Qian, X. Fan, A. Ji, G.Q. Zhang, J. Mater. Sci. 28(23), 17557 (2017)Google Scholar
  6. 6.
    M.E. Raypah, M. Devarajan, F. Sulaiman, Solder. Surf. Mt. Tech. 30(3), 182 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Long, J. He, J. Zhou, L. Fang, X. Zhou, F. Ren, T. Xu, Renew. Sustain. Energy Rev. 41, 29 (2015)CrossRefGoogle Scholar
  8. 8.
    D.H. Shin, D.K. Sohn, H.S. Ko, Appl. Therm. Eng. 143, 376 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Ke, L. Jing, J. Hao, Q. Gao, Y. Wang, X. Wang, Q. Sun, Z. Xu, Appl. Opt. 55(22), 5909 (2016)CrossRefGoogle Scholar
  10. 10.
    Q. Xia, Y. Ren, Z. Wang, B. Sun, Q. Feng, D. Yang, C. Qian, In: EuroSimE 2018. 17805822(2018)Google Scholar
  11. 11.
    J. Fan, K.C. Yung, M. Pecht, IEEE Trans. Device Mater. Reliab. 12(2), 470 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Chen, J. Zhou, F. Xue, Y. Yao, Mater. Sci. Eng. A-Struct. 662, 251 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, H. Fu, F. Sun, H. Zhang, X. Kong, T. Xin, J. Mater. Process. Tech. 238, 290 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Li, Y. Ma, W. Zhou, P. Wu, Mater. Sci. Eng. A-Struct. 684, 328 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Zhou, O. Mokhtari, M.G. Rafique, V.C. Shunmugasamy, B. Mansoor, H. Nishikawa, J. Alloy. Compd. 765, 1243 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Ma, X. Li, L. Yang, W. Zhou, M. Wang, W. Zhu, P. Wu, Mater. Sci. Eng. A-Struct. 696, 437 (2017)CrossRefGoogle Scholar
  17. 17.
    P. He, X. Lu, T. Lin, H. Li, J. An, X. Ma, J. Feng, Y. Zhang, Q. Li, Y. Qian, T. Nonferr. Metal. Soc. 22, s692 (2012)CrossRefGoogle Scholar
  18. 18.
    L. Yang, W. Zhou, Y. Liang, W. Cui, P. Wu, Mater. Sci. Eng. A-Struct. 642, 7 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Yang, H. Liu, Y. Zhang, H. Yu, J. Mater. Eng. Perform. 26(12), 6028 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Li, Y. Chan, J. Alloy. Compd. 645, 566 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Chen, F. Xue, J. Zhou, Y. Yao, J. Alloy. Compd. 633, 377 (2015)CrossRefGoogle Scholar
  22. 22.
    S.R. Hostler, Y.Q. Qu, M.T. Demko, A.R. Abramson, X. Qiu, C. Burda, Superlattice. Microstruct. 43(3), 195 (2008)CrossRefGoogle Scholar
  23. 23.
    Z. Chen, Q. Zhang, F. Jiao, R. Chen, K. Wang, M. Chen, S. Liu, IEEE Trans. Comp. Pack. Man. 2(7), 1135 (2012)Google Scholar
  24. 24.
    D.S. Kim, B. Han, in Solid State Lighting Reliability Part 2, ed. by W.D. By, X. Driel, G.Q. Fan, Zhang (Springer, New York, 2018), p. 159CrossRefGoogle Scholar
  25. 25.
    V.R. Tarnawski, W.H. Leong, Int. J. Thermophys. 33(7), 1191 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Gu, Y.C. Chan, J. Appl. Phys. 105(9), 093537 (2009)CrossRefGoogle Scholar
  27. 27.
    H. Zhang, Y. Liu, F. Sun, G. Ban, J. Fan, Microelectron. Int. 34(1), 40 (2017)CrossRefGoogle Scholar
  28. 28.
    B. Fan, H. Wu, Y. Zhao, Y. Xian, B. Zhang, G. Wang, IEEE Trans. Electron Device 55(12), 3375 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations