The effect of the triangular and spherical shaped CuSbS2 structure on the electrical properties of Au/CuSbS2/p-Si photodiode

  • Murat YıldırımEmail author
  • Adem Kocyigit
  • Adem Sarılmaz
  • Faruk OzelEmail author


CuSbS2 (Chalcostibite) crystals were synthesized by the hot-injection method as triangular and spherical shaped structures. The crystals were inserted by spin coating technique as interfacial layers between Au metal and p-Si to investigate their electrical and photoresponse properties via I-V measurements under various light intensities. The XRD measurements were performed to show the crystalline structure of the spherical and triangular CuSbS2. The TEM images confirmed the triangular and spherical particle structures of the CuSbS2 crystals. The I-V measurements were performed under dark, 20–100 mW light intensities with 20 mW interval for spherical and triangular CuSbS2 photodiodes. In addition, diode parameters were extracted and discussed in the details. The results highlighted that triangular and spherical shaped structures have good photoresponse to the illumination and can be employed in the photodiode and photodetector applications.



This work is supported by Selçuk University BAP office with the research Project Number 17401159 and TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 217M212.


  1. 1.
    B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, J. Tang, Chem. Mater. 26, 3135 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Macías, S. Lugo, Á Benítez, I. López, B. Kharissov, A. Vázquez, Y. Peña, Mater. Res. Bull. 87, 161 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Zhang, Y. Li, X. Li, C. Li, R. Zhang, J.J. Delaunay, H. Zhu, Nano Energy 28, 135 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Banu, S.J. Ahn, S.K. Ahn, K. Yoon, A. Cho, Sol. Energy Mater. Sol. Cells 151, 14 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Kumar, C. Persson, J. Renew. Sustain. Energy (American Institute of Physics, College Park, 2013), p. 031616Google Scholar
  6. 6.
    R. Teimouri, R. Mohammadpour, Superlattices Microstruct. 118, 116 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Kang, L. Zhao, L. Jiang, C. Yan, K. Sun, B.K. Ng, C. Gao, F. Liu, Mater. Sci. Semicond. Process. 84, 101 (2018)CrossRefGoogle Scholar
  8. 8.
    A.D. Sivagami, K. Biswas, A. Sarma, Mater. Sci. Semicond. Process. 87, 69 (2018)CrossRefGoogle Scholar
  9. 9.
    U. Chalapathi, B. Poornaprakash, C.H. Ahn, S.H. Park, Ceram. Int. 44, 14844 (2018)CrossRefGoogle Scholar
  10. 10.
    M.E. Edley, B. Opasanont, J.T. Conley, H. Tran, S.Y. Smolin, S. Li, A.D. Dillon, A.T. Fafarman, J.B. Baxter, Thin Solid Films 646, 180 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Wang, L. Hao, W. Zhang, Q. Lin, X. Zhang, Z. Tang, J. Mater. Sci. 29, 4075 (2018)Google Scholar
  12. 12.
    S. Moosakhani, A.A. Sabbagh Alvani, R. Mohammadpour, P.M. Hannula, Y. Ge, S.P. Hannula, Mater. Lett. 215, 157 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Dekhil, H. Dahman, S. Rabaoui, N. Yaacoub, L. El Mir, J. Mater. Sci. 28, 11631 (2017)Google Scholar
  14. 14.
    J.A. Ramos Aquino, D.L. Rodriguez Vela, S. Shaji, D.A. Avellaneda, B. Krishnan, Phys. Status Solidi 13, 24 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, J. Cryst. Growth 223, 399 (2001)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, J. Huang, J. Han, T. Hong, J. Zhang, Z. Liu, Phys. Chem. Chem. Phys. 18, 16615 (2016)CrossRefGoogle Scholar
  17. 17.
    A.C. Rastogi, N.R. Janardhana, Thin Solid Films 565, 285 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Ikeda, S. Sogawa, Y. Tokai, W. Septina, T. Harada, M. Matsumura, RSC Adv. 4, 40969 (2014)CrossRefGoogle Scholar
  19. 19.
    M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Chem. Soc. Rev. 42, 2986 (2013)CrossRefGoogle Scholar
  20. 20.
    K. Ramasamy, H. Sims, W.H. Butler, A. Gupta, J. Am. Chem. Soc. 136, 1587 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Wageh, W.A. Farooq, A. Tataroğlu, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, Phys. B 527, 44 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Tatar, A.E. Bulgurcuoglu, P. Gokdemir, P. Aydogan, D. Yilmazer, O. ozdemir, K. Kutlu, Int. J. Hydrog. Energy 34, 5208 (2009)CrossRefGoogle Scholar
  23. 23.
    I. Orak, M. Toprak, A. Turut, Phys. Scr. 89, 115810 (2014)CrossRefGoogle Scholar
  24. 24.
    A.S. Dahlan, A. Tataroğlu, A.A. Al-Ghamdi, A.A. Al-Ghamdi, S. Bin-Omran, Y. Al-Turki, F. El-Tantawy, F. Yakuphanoglu, J. Alloys Compd. 646, 1151 (2015)CrossRefGoogle Scholar
  25. 25.
    F. Wang, J. Mei, Y. Wang, L. Zhang, H. Zhao, D. Zhao, ACS Appl. Mater. Interfaces 8, 2840 (2016)CrossRefGoogle Scholar
  26. 26.
    O.S. Cifci, A. Kocyigit, P. Sun, Superlattices Microstruct. 120, 492 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Yıldırım, A. Aljabour, A. Sarılmaz, F. Özel, J. Alloys Compd. 722, 420 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Singh, H. Geaney, F. Laffir, K.M. Ryan, J. Am. Chem. Soc. 134, 2910 (2012)CrossRefGoogle Scholar
  29. 29.
    F. Ozel, E. Aslan, B. Istanbullu, O. Akay, I. Hatay, Patir, Appl. Catal. B. 198, 67 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Soylu, I.S. Yahia, F. Yakuphanoglu, W.A. Farooq, J. Appl. Phys. 110, 074514 (2011)CrossRefGoogle Scholar
  31. 31.
    E.A. Guliants, C. Ji, Y.J. Song, W.A. Anderson, Appl. Phys. Lett. 80, 1474 (2002)CrossRefGoogle Scholar
  32. 32.
    B.A. Gozeh, A. Karabulut, A. Yildiz, F. Yakuphanoglu, J. Alloys Compd. 732, 16 (2018)CrossRefGoogle Scholar
  33. 33.
    S.K. Singh, P. Hazra, S. Tripathi, P. Chakrabarti, Superlattices Microstruct. 91, 62 (2016)CrossRefGoogle Scholar
  34. 34.
    O.S. Cifci, M. Bakir, J.L. Meyer, A. Kocyigit, Mater. Sci. Semicond. Process. 74, 175 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Ilhan, J. Mater. Electron. Devices 1, 15 (2017)Google Scholar
  36. 36.
    Ş Altındal, J. Mater. Electron. Devices 1, 42 (2017)Google Scholar
  37. 37.
    H. Özerli, İ Karteri, A. Bekereci, Ş Karataş, J. Mater. Electron. Devices 1, 83 (2017)Google Scholar
  38. 38.
    B. Roul, S. Mukundan, G. Chandan, L. Mohan, S.B. Krupanidhi, Cit. AIP Adv. Appl. Phys. Lett 5, 162111 (2015)Google Scholar
  39. 39.
    Ş Karataş, Microelectron. Eng. 87, 1935 (2010)CrossRefGoogle Scholar
  40. 40.
    N.P. Maity, R. Maity, R.K. Thapa, S. Baishya, J. Nanoelectron. Optoelectron. 10, 645 (2015)CrossRefGoogle Scholar
  41. 41.
    D.E. Yıldız, Ş Altındal, H. Kanbur, J. Appl. Phys. 103, 124502 (2008)CrossRefGoogle Scholar
  42. 42.
    F. Yakuphanoglu, S. Actuators, A Phys. 141, 383 (2008)Google Scholar
  43. 43.
    L.D. Rao, V.R. Reddy, in AIP Conf. Proc. (AIP Publishing LLC, 2016), p. 120020Google Scholar
  44. 44.
    İ Taşçıoğlu, W.A. Farooq, R. Turan, Ş Altındal, F. Yakuphanoglu, J. Alloys Compd. 590, 157 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Kaya, E. Marıl, Ş Altındal, İ Uslu, Microelectron. Eng. 149, 166 (2016)CrossRefGoogle Scholar
  46. 46.
    I. Missoum, Y.S. Ocak, M. Benhaliliba, C.E. Benouis, A. Chaker, Synth. Met. 214, 76 (2016)CrossRefGoogle Scholar
  47. 47.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  48. 48.
    Ş Karataş, N. Yildirim, A. Türüt, Superlattices Microstruct. 64, 483 (2013)CrossRefGoogle Scholar
  49. 49.
    A. Kocyigit, I. Orak, İ Karteri, S. Uruş, Curr. Appl. Phys. 17, 1215 (2017)CrossRefGoogle Scholar
  50. 50.
    H. Norde, J. Appl. Phys. 50, 5052 (1979)CrossRefGoogle Scholar
  51. 51.
    M. Yıldırım, A. Kocyigit, J. Alloys Compd. 768, 1064 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science, Department of BiotechnologySelcuk UniversityKonyaTurkey
  2. 2.Engineering Faculty, Department of Electrical Electronic EngineeringIgdir UniversityIgdirTurkey
  3. 3.Faculty of Engineering, Department of Metallurgical Science and Materials EngineeringKaramanoğlu Mehmetbey UniversityKaramanTurkey
  4. 4.KaramanogluMehmetbey University, Scientific and Technological Research and Application CenterKaramanTurkey

Personalised recommendations