Advertisement

Dielectric and microwave absorption properties of LiCoO2 and its enhancement by micro-doping with metal ions

  • Minghao YangEmail author
  • Wancheng Zhou
  • Fa Luo
  • Dongmei Zhu
Article
  • 44 Downloads

Abstract

LiCoO2 powders are the popular active cathode material in lithium batteries, but their dielectric and microwave absorption properties were seldom reported. In this work, the LiCoO2 powders were synthesized by solid-state reaction. And in order to enhance their dielectric properties, influence of metal ions micro-dopant on the electromagnetic property of LiM0.94Co0.06O2 powders (M = Mg, Zn, Ni, Mn and Y) was investigated. The phase and composition were characterized. The dielectric properties and the microwave absorption properties were evaluated. Compared to dopant of Zn, Ni, Mn and Y ions, the results showed that both the real part (ε′) and imaginary part (ε″) of LiM0.94Co0.06O2/paraffin mixtures were obviously increased by doping Mg ions. One layer absorbent with 75 wt% LiMg0.06Co0.94O2 content of a thickness of 1.8 mm had the optimum microwave absorption properties. The lowest reflection loss was − 36.6 dB. The results indicated that LiCoO2 and LiM0.06Co0.94O2 powders would be a possible candidate for microwave absorption materials.

Notes

Acknowledgements

This work was supported by National Natural science Foundation of China. No. 51072165.

References

  1. 1.
    K.J. Vinoy, R.M. Jha, Trends in radar absorbing materials technology. Sadhana 20, 815–850 (1995).  https://doi.org/10.1007/Bf02744411 CrossRefGoogle Scholar
  2. 2.
    T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, K. Hatakeyama, Frequency dispersion and temperature-variation of complex permeability of Ni-Zn ferrite composite-materials. J. Appl. Phys. 78(6), 3983–3991 (1995).  https://doi.org/10.1063/1.359919 CrossRefGoogle Scholar
  3. 3.
    Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, Electromagnetic and microwave absorption properties of SiO2-coated Ti3SiC2 powders with higher oxidation resistance. J. Alloy. Compd. 715, 21–28 (2017).  https://doi.org/10.1016/j.jallcom.2017.04.301 CrossRefGoogle Scholar
  4. 4.
    Y.W. Dai, M.Q. Sun, C.G. Liu, Z.Q. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem. Concr. Compos. 32(7), 508–513 (2010).  https://doi.org/10.1016/j.cemconcomp.2010.03.009 CrossRefGoogle Scholar
  5. 5.
    Z.H. Zhu, Y.F. Zhou, P.F. Yan, R.S. Vemuri, W. Xu, R. Zhao, X.L. Wang, S. Thevuthasan, D.R. Baer, C.M. Wang, In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15(9), 6170–6176 (2015).  https://doi.org/10.1021/acs.nanolett.5b02479 CrossRefGoogle Scholar
  6. 6.
    W.C. Zhou, X.J. Hu, X.X. Bai, S.Y. Zhou, C.H. Sun, J. Yan, P. Chen, Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3,4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interface 3(10), 3839–3845 (2011).  https://doi.org/10.1021/am2004812 CrossRefGoogle Scholar
  7. 7.
    H. Tukamoto, A.R. West, Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc. 144(9), 3164–3168 (1997).  https://doi.org/10.1149/1.1837976 CrossRefGoogle Scholar
  8. 8.
    R. Alcantara, P. Lavela, J.L. Tirado, R. Stoyanova, E. Zhecheva, Structure and electrochemical properties of boron-doped LiCoO2. J. Solid State Chem. 134(2), 265–273 (1997).  https://doi.org/10.1006/jssc.1997.7552 CrossRefGoogle Scholar
  9. 9.
    X.M. Zhu, K.H. Shang, X.Y. Jiang, X.P. Ai, H.X. Yang, Y.L. Cao, Enhanced electrochemical performance of Mg-doped LiCoO2 synthesized by a polymer-pyrolysis method. Ceram. Int. 40(7), 11245–11249 (2014).  https://doi.org/10.1016/j.ceramint.2014.03.170 CrossRefGoogle Scholar
  10. 10.
    I. Saadoune, C. Delmas, On the LixNi0.8Co0.2O2 system. J. Solid State Chem. 136(1), 8–15 (1998).  https://doi.org/10.1006/jssc.1997.7599 CrossRefGoogle Scholar
  11. 11.
    M.J. Zou, M. Yoshio, S. Gopukumar, J. Yamaki, Synthesis of high-voltage (4.5 V) cycling doped LiCoO2 for use in lithium rechargeable cells. Chem. Mater. 15(25), 4699–4702 (2003).  https://doi.org/10.1021/cm0347032 CrossRefGoogle Scholar
  12. 12.
    F. Nobili, F. Croce, R. Tossici, I. Meschini, P. Reale, R. Marassi, Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012).  https://doi.org/10.1016/j.jpowsour.2011.09.053 CrossRefGoogle Scholar
  13. 13.
    H.F. Wang, Y.I. Jang, B.Y. Huang, D.R. Sadoway, Y.T. Chiang, TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146(2), 473–480 (1999).  https://doi.org/10.1149/1.1391631 CrossRefGoogle Scholar
  14. 14.
    S. Gopukumar, Y. Jeong, K.B. Kim, Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion. 159(3–4), 223–232 (2003).  https://doi.org/10.1016/S0167-2738(03)00081-X CrossRefGoogle Scholar
  15. 15.
    K. Kang, G. Ceder (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74 (9).  https://doi.org/10.1103/PhysRevB.74.094105
  16. 16.
    E. Rossen, J.N. Reimers, J.R. Dahn, Synthesis and electrochemistry of spinel Lt-LiCoO2. Solid State Ion. 62(1–2), 53–60 (1993).  https://doi.org/10.1016/0167-2738(93)90251-W CrossRefGoogle Scholar
  17. 17.
    S. Hufner, Electronic-structure of NiO and related 3d-transition-metal compounds. Adv. Phys. 43(2), 183–356 (1994).  https://doi.org/10.1080/00018739400101495 CrossRefGoogle Scholar
  18. 18.
    L. Daheron, R. Dedryvere, H. Martinez, M. Menetrier, C. Denage, C. Delmas, D. Gonbeau, Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20(2), 583–590 (2008).  https://doi.org/10.1021/cm702546s CrossRefGoogle Scholar
  19. 19.
    Y.V. Fedoseeva, M.L. Kosinova, S.A. Prokhorova, I.S. Merenkov, L.G. Bulusheva, A.V. Okotrub, F.A. Kuznetsov (2012) X-ray spectroscopic study of the electronic structure of boron carbonitride films obtained by chemical vapor deposition on Co/Si and CoO(x)/Si substrates. J. Struct. Chem. 53(4), 690–698.  https://doi.org/10.1134/S0022476612040117 CrossRefGoogle Scholar
  20. 20.
    J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2(6), 1319–1324 (2000).  https://doi.org/10.1039/a908800h CrossRefGoogle Scholar
  21. 21.
    Y.B. Li, G. Chen, Q.H. Li, G.Z. Qiu, X.H. Liu, Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloy. Compd. 509(10), 4104–4107 (2011).  https://doi.org/10.1016/j.jallcom.2010.12.100 CrossRefGoogle Scholar
  22. 22.
    S. Valanarasu, R. Chandramohan, J. Thirumalai, T.A. Vijayan, Structural and electrochemical investigation of Zn-doped LiCoO2 powders. Ionics 18(1–2), 39–45 (2012).  https://doi.org/10.1007/s11581-011-0607-6 CrossRefGoogle Scholar
  23. 23.
    Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang (2009) Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J. Appl. Phys. 106 (5).  https://doi.org/10.1063/1.3204958
  24. 24.
    L. Zhou, W.C. Zhou, J.B. Su, F. Luo, D.M. Zhu, Y.L. Dong, Plasma sprayed Al2O3/FeCrAl composite coatings for electromagnetic wave absorption application. Appl. Surf. Sci. 258(7), 2691–2696 (2012).  https://doi.org/10.1016/j.apsusc.2011.10.119 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Minghao Yang
    • 1
    Email author
  • Wancheng Zhou
    • 1
  • Fa Luo
    • 1
  • Dongmei Zhu
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations