Microwave absorbing and mechanical properties of carbon fiber/bismaleimide composites imbedded with Fe@C/PEK-C nano-membranes

  • Qi YuEmail author
  • Zixuan Wang
  • Ping ChenEmail author
  • Qi Wang
  • Yiyi Wang
  • Mingbo Ma


An effective approach is proposed to fabricate hybrid multilayer stealth composite composed of carbon fiber/bismaleimide composites containing carbon coated Fe (Fe@C)/phenolphthalein polyetherketone (PEK-C) nano-membranes as interlaminar electromagnetic absorbing agents. Dynamic mechanical analysis and interlaminar shear strength tests were carried out to evaluate mechanical properties. Special attention was paid to the permittivity, permeability and microwave absorbing properties. The results indicated that the radar-absorbing structural materials (RASs) showed a minimum reflection loss (RL) value of − 16.85 dB observed at 11.5 GHz at a thickness of 1.7 mm, with the values exceeding − 10 dB achieved in 9.7–16.7 GHz with increasing thicknesses. The measured RL values were in good agreement with the calculated ones. This strategy may be extended as a versatile approach to achieve high performance RASs, thereby promoting their engineering applications at low cost in aerospace industry.



This work was supported by the National Natural Science Foundation of China [Grant Numbers 51303106]; the National Defense 12th 5-year program Foundational Research Program [Grant Numbers A352011XXXX]; the Fundamental Research Funds for the Central Universities [Grant Numbers DUT18GF107]; Aviation science foundation [Grant Numbers 20173754009].


  1. 1.
    Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, J. Mater. Sci. 29, 17122 (2018)Google Scholar
  2. 2.
    W. Xie, X.K. Zhu, S.H. Yi, J.C. Kuang, H.F. Cheng, W. Tang, Y.J. Deng, Mater. Design. 90, 38 (2016)CrossRefGoogle Scholar
  3. 3.
    Y.H. Yu, C.M. Ma, K.C. Yu, C.C. Teng, H.W. Tien, K.Y. Chang, Y.K. Kuo, J. Taiwan Inst. Chem. E. 45, 674 (2014)CrossRefGoogle Scholar
  4. 4.
    L.M. Yu, B. Li, L.M. Sheng, K. An, X.L. Zhao, J. Alloy. Compd. 575, 123 (2013)CrossRefGoogle Scholar
  5. 5.
    M.S. Shi, H. Huang, C.J. Xie, F.H. Xue, P. Chen, X.L. Dong, CJJCC 10, 267 (2012)Google Scholar
  6. 6.
    C.D. Jin, Q.F. Yao, J.P. Li, B.T. Fan, Q.F. Sun, Mater. Design. 85, 205 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Liu, C. Tang, P. Chen, Q. Yu, W.K. Li, RSC Adv. 4, 26881 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Liu, P. Chen, Q. Yu, K.M. Ma, Z.F. Ding, Appl. Surf. Sci. 305, 630 (2014)CrossRefGoogle Scholar
  9. 9.
    Q. Yu, P. Chen, L. Wang, Nucl. Instrum. Meth. B. 298, 42 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Shah, Y.H. Wang, H. Huang, L. Zhang, D.X. Wang, L. Zhou, Y.P. Duan, X.L. Dong, Z.D. Zhang, Compos. struct. 131, 1132 (2015)CrossRefGoogle Scholar
  11. 11.
    M.H. Fiaifel, S.H. Ahmad, M.H. Abdullah, R. Rasid, A.H. Shaari, A.A. Saleh, S. Appadu, Compos. Sci. Technol. 96, 103 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Choi, J.G. Kim, S. Seo, D.G. Lee, Compos. struct. 94, 3002 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Choi, D. Lee, D.G. Lee, Compos. struct. 122, 23 (2015)CrossRefGoogle Scholar
  14. 14.
    G.Q. Wang, Y.F. Chang, L.F. Wang, C. Liu, Adv. Powder Technol. 23, 861 (2012)CrossRefGoogle Scholar
  15. 15.
    C.J. Li, B. Wang, J.N. Wang, J. Magn. Magn. Mater. 324, 1305 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Zhu, G.Q. Ning, Z.J. Fan, J.S. Gao, C.M. Xu, W.Z. Qian, F. Wei, Carbon. 50, 2764 (2012)CrossRefGoogle Scholar
  17. 17.
    Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. mater. 28, 486 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Wang, H.D. Wang, X. Chi, R. Li, J.B. Wang, Carbon. 74, 312 (2014)CrossRefGoogle Scholar
  19. 19.
    H.J. Wu, G.L. Wu, Y.Y. Ren, X.H. Li, L.D. Wang, Chem. Eur. J. 22, 8864 (2016)CrossRefGoogle Scholar
  20. 20.
    Q. Yu, M.B. Ma, P. Chen, Q. Wang, C. Lu, Y. Gao, R.C. Wang, H.L. Chen, Polym. Eng. Sci. 57, 1186 (2017)Google Scholar
  21. 21.
    Q. Yu, H.L. Chen, P. Chen, Q. Wang, C. Lu, C.X. Jia, J. Mater. Sci. 28, 2769 (2017)Google Scholar
  22. 22.
    G. Li, P. Li, C. Zhang, Y.H. Yu, H.Y. Liu, S. Zhang, X.L. Jia, X.P. Yang, Z.M. Xue, S.K. Ryu, Compos. Sci. Technol. 68, 987 (2008)CrossRefGoogle Scholar
  23. 23.
    Q.F. Cheng, Z.P. Fang, Y.H. Xu, X.S. Yi, Chinese J. Aeronaut. 22, 87 (2009)CrossRefGoogle Scholar
  24. 24.
    Q. Chen, Y. Zhao, Z.P. Zhou, A. Rahman, X.F. Wu, W.D. Wu, T. Xu, H. Fong, Compos. Part B-Eng. 44, 1 (2013)CrossRefGoogle Scholar
  25. 25.
    Q. Chen, W.D. Wu, Y. Zhao, M. Xi, T. Xu, H. Fong, Compos. Part B 58, 43 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Nanni, C.D. Gaudio, I.I. Armentano, M. Dottori, A. Bianco, J.M. Kenny, G. Gusmano, Synth. Met. 161, 911 (2011)CrossRefGoogle Scholar
  27. 27.
    H.L. Lv, Y.H. Guo, G.L. Wu, G.B. Ji, Y. Zhao, Z.J. Xu, ACS Appl. Mater. Interfaces. 9, 5660 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Nicolson, G. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)CrossRefGoogle Scholar
  29. 29.
    E. Michielssen, J.M. Sajer, S. Ranjithan, R. Mittra, IEEE Trans. Instrum. Meas. 41, 1024 (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering & Liaoning Key Laboratory of Advanced Polymer Matrix CompositesShenyang Aerospace UniversityShenyangChina
  2. 2.School of Chemical Engineering & Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education)Dalian University of TechnologyDalianChina

Personalised recommendations