Preparation and electromagnetic attenuation properties of MoS2–PANI composites: a promising broadband absorbing material

  • Jiling Yang
  • Mingquan YeEmail author
  • Aijun Han
  • Yu Zhang
  • Kui Zhang


As an ideal electromagnetic (EM) wave absorber, it is prone to possess lightweight, thin matching thickness, broad absorption bandwidth and strong absorption performance. In this work, MoS2–PANI composites were prepared by situ chemical oxidative polymerization method, and the crystal structure, morphology, composition and EM properties were characterized. The microwave absorption properties of MoS2–PANI composites could be tuned by changing the PANI content to reach the best impedance match. The minimum reflection loss (RL) value of MoS2–PANI was − 40.79 dB at 14.01 GHz with the thickness of 2.0 mm, and the maximum effective absorption bandwidth was 5.02 GHz ranging from 11.88 to 16.90 GHz with a thickness of 2.0 mm. Moreover, the RL value of MoS2–PANI composites could reach under − 10 dB in a wide frequency range of 4.74–18 GHz with a thickness of 1.5–4.5 mm. In particular, the 3 mm wave attenuation properties of MoS2–PANI composites were investigated for the first time, and the maximum attenuation value reached 15.45 dB. As a result, MoS2–PANI composites are promising to be excellent EM wave absorption materials in broadband.



This work was supported by a program funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (Grant No. 2000).

Supplementary material

10854_2018_292_MOESM1_ESM.pdf (154 kb)
Supplementary Figure S1 (PDF 153 KB)


  1. 1.
    C.P. Mu, J.F. Song, B.C. Wang, C. Zhang, J.Y. Xiang, F.S. Wen, Z.Y. Liu, Nanotechnology 29, 025704 (2018)Google Scholar
  2. 2.
    P.B. Liu, Y. Huang, J. Yan, Y.W. Yang, Y. Zhao, ACS Appl. Mater. Interfaces 8, 5536–5546 (2016)Google Scholar
  3. 3.
    S. Qiu, H.L. Lyu, J.R. Liu, Y.Z. Liu, N.N. Wu, W. Liu, ACS Appl. Mater. Interfaces 8, 20258–20266 (2016)Google Scholar
  4. 4.
    M.W. Shi, Y.Y. Zhang, M.D. Bai, B.M. Li, Synth. Met. 233, 74–78 (2017)Google Scholar
  5. 5.
    Y.C. Deng, L. Tang, G.M. Zeng, H.R. Dong, M. Yan, J.J. Wang, W. Hu, J.J. Wang, Y.Y. Zhou, J. Tang, Appl. Surf. Sci. 387, 882–893 (2016)Google Scholar
  6. 6.
    H. Zhao, A. Du, M. Ling, V. Battaglia, G. Liu, Electrochim. Acta 209, 159–162 (2016)Google Scholar
  7. 7.
    D.K. Zhao, L.G. Li, W.H. Niu, S.W. Chen, Sens. Actuators B 243, 380–387 (2017)Google Scholar
  8. 8.
    A. Pron, P. Rannou, Prog. Polym. Sci. 27, 135–190 (2002)Google Scholar
  9. 9.
    A.P.H.J. Schenning, E.W. Meijer, Chem. Commun. 26, 3245–3258 (2005)Google Scholar
  10. 10.
    M.X. Wan, Adv. Mater. 20, 2926–2932 (2008)Google Scholar
  11. 11.
    Q. Jia, W.Z. Wang, J. Zhao, J.P. Xiao, L.Y. Lu, H.L. Fan, J. Alloys Compd. 710, 717–724 (2017)Google Scholar
  12. 12.
    P.B. Liu, Y. Huang, L. Wang, W. Zhang, Synth. Met. 177, 89–93 (2013)Google Scholar
  13. 13.
    Y. Xu, J.H. Luo, W. Yao, J.G. Xu, T. Li, J. Alloys Compd. 636, 310–316 (2015)Google Scholar
  14. 14.
    N.N. Ali, R.A.Q.B. Al-Marjeh, Y. Atassi, A. Salloum, A. Malki, M. Jafarian, J. Magn. Magn. Mater. 453, 53–61 (2018)Google Scholar
  15. 15.
    C.N.R. Rao, H.S.S. Ramakrishna Matte, U. Maitra, Angew. Chem. Int. Ed. 52, 13162–13185 (2013)Google Scholar
  16. 16.
    M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou, C.Z. Wang, F. Rehman, M.S. Cao, H.B. Jin, Nanoscale 7, 15734–15740 (2015)Google Scholar
  17. 17.
    X. Ding, Y. Huang, S.P. Li, N. Zhang, J.G. Wang, Composites A 90, 424–432 (2016)Google Scholar
  18. 18.
    X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, L. Guo, J. Phys. Chem. C 120, 22019–22027 (2016)Google Scholar
  19. 19.
    H. Liu, F. Zhang, W.Y. Li, X.L. Zhang, C.S. Lee, W.L. Wang, Y.B. Tang, Electrochim. Acta 167, 132–138 (2015)Google Scholar
  20. 20.
    J. Wang, Z.C. Wu, K.H. Hu, X.Y. Chen, H.B. Yin, J. Alloys Compd. 619, 38–43 (2015)Google Scholar
  21. 21.
    Y. Gao, C.L. Chen, X.L. Tan, H. Xu, K.R. Zhu, J. Colloid Interface Sci. 476, 62–70 (2016)Google Scholar
  22. 22.
    K.J. Huang, J.Z. Zhang, Y.J. Liu, L.L. Wang, Sens. Actuators B 194, 303–310 (2014)Google Scholar
  23. 23.
    S.A. Wang, S.P. Zhang, M.X. Liu, H.O. Song, J.J. Gao, Y.Y. Qian, Sens. Actuators B 254, 1101–1109 (2018)Google Scholar
  24. 24.
    J. Zhu, M.Q. Ye, A.J. Han, J. Mater. Sci. Mater. Electron. 28, 13350–13359 (2017)Google Scholar
  25. 25.
    S.S. Ding, P. He, W.R. Feng, L. Li, G.L. Zhang, J.C. Chen, F.Q. Dong, H.C. He, J. Phys. Chem. Solids 91, 41–47 (2016)Google Scholar
  26. 26.
    A.B. Laursen, P.C.K. Vesborg, I. Chorkendorff, Chem. Commun. 49, 4965–4967 (2013)Google Scholar
  27. 27.
    W.L. Zhang, D.G. Jiang, X.X. Wang, B.N. Hao, Y.D. Liu, J.Q. Liu, J. Phys. Chem. C 121, 4989–4998 (2017)Google Scholar
  28. 28.
    A.K. Thakur, A.B. Deshmukh, R.B. Choudhary, I. Karbhal, M. Majumder, M.V. Shelke, Mater. Sci. Eng. B 223, 24–34 (2017)Google Scholar
  29. 29.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65, 124–139 (2013)Google Scholar
  30. 30.
    M.S. Cao, C. Han, X.X. Wang, M. Zhang, Y.L. Zhang, J.C. Shu, H.J. Yang, X.Y. Fang, J. Yuan, J. Mater. Chem. C 6, 4586–4602 (2018)Google Scholar
  31. 31.
    Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Q. Wang, Q.G. Wang, Mater. Chem. Phys. 209, 23–30 (2018)Google Scholar
  32. 32.
    Y. Sun, J.L. Xu, W. Qiao, X.B. Xu, W.L. Zhang, K.Y. Zhang, X. Zhang, X. Chen, W. Zhong, Y.W. Du, ACS Appl. Mater. Interfaces 8, 31878–31886 (2016)Google Scholar
  33. 33.
    X.B. Wang, W.F. Zhu, X. Wei, Y.X. Zhang, H.H. Chen, Mater. Sci. Eng. B 185, 1–6 (2014)Google Scholar
  34. 34.
    M.Q. Ye, Z.T. Li, C. Wang, A.J. Han, Mater. Res. Bull. 76, 247–255 (2016)Google Scholar
  35. 35.
    J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, Chem. Eng. J. 339, 487–498 (2018)Google Scholar
  36. 36.
    W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, J. Mater. Chem. C 3, 10017–10022 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations