Advertisement

Structure and magnetic analyses of hexaferrite Sr1−xLaxFe22+Fe163+O27 prepared via the solid-state reaction

  • Jin Tang
  • Xiansong LiuEmail author
  • Dan Li
  • Yujie Yang
  • Xucai Kan
  • Khalid Mehmood Ur Rehman
Article
  • 69 Downloads

Abstract

W-type ferrite Sr1−xLaxFe22+Fe163+O27 (x = 0.00, 0.05, 0.08, 0.10, 0.13 and 0.15) powders and magnets were prepared via the solid-state reaction in nitrogen. Phase components of the powder samples were examined by X-ray diffraction (XRD). XRD results demonstrated the appearance of pure phase hexagonal crystal structure and calculate the lattice constants c and a, c/a ratio, cell volume (Vcell), X-ray density (dX-ray) and crystallite size (D) parameters according to XRD data. Scanning electron microscopy (SEM) was used to observe the morphology of the magnets. SEM analyses revealed the hexagonal morphology of the ferrites. The magnetic characteristics of magnetic powders were measured by a vibrating sample magnetometer (VSM), and the magnetic characteristics of magnets were also measured by a permanent magnetic measuring equipment. The results indicate that, the synthesized samples with a low coercive force value and a considerable saturation magnetization are best able to make optical read-out of the magnetic storage information in erasable video and audio discs.

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 51472004, 51272003).

References

  1. 1.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applicatios of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Slimani, A. Baykal, A. Manikandan, Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J. Magn. Magn. Mater. 458, 204–212 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Slimani, A. Baykal, M. Amir et al., Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceram. Int. 44, 15995–16004 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Asiri, S. Güner, A. Demir et al., Synthesis and magnetic characterization of Cu substituted barium hexaferrites. J. Inorg. Organomet. Polym. 28, 1065–1071 (2018)CrossRefGoogle Scholar
  5. 5.
    G.F.M. Pires Júnior, H.O. Rodrigues, J.S. Almeida et al., Study of the dielectric and magnetic properties of Co2Y, Y-type hexaferrite (Ba2Co2Fe12O22) added with PbO and Bi2O3 in the RF frequency range. J. Alloy. Compd. 493, 326–334 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Ahmad, M. Ahmad, I. Ali et al., Temperature dependent structural and magnetic behavior of Y-type hexagonal ferrites synthesized by sol–gel autocombustion. J. Alloy. Compd. 651, 749–755 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Ahmad, I. Ali, R. Grössinger, Effects of divalent ions substitution on the microstructure, magnetic and electromagnetic parameters of Co2W hexagonal ferrites synthesized by sol–gel method. J. Alloy. Compd. 579, 57–64 (2013)CrossRefGoogle Scholar
  8. 8.
    M.A. Ahmed, N. Okasha, M. Oaf, R.M. Kershi. The role of Mg substitution on the microstructure and magnetic properties of BaCoZn W-type hexagonal ferrites. J. Magn. Magn. Mater. 314, 128–134 (2007)CrossRefGoogle Scholar
  9. 9.
    G.R. Gordani, M. Mohseni et al., Microstructure, magnetic and microwave absorptive behavior of doped W-type hexaferrite nanoparticles prepared by co-precipitation method. Mater. Res. Bull. 76, 187–194 (2016)CrossRefGoogle Scholar
  10. 10.
    D.M. Hemeda, A. Al-Sharif, O.M. Hemeda, Effect of Co substitution on the structural and magnetic properties of Zn–W hexaferrite. J. Magn. Magn. Mater. 315, L1–L7 (2007)CrossRefGoogle Scholar
  11. 11.
    L.A. Bashkirov, G.P. Dudchik, T.A. But’ko et al., Barium–strontium and nickel–cobalt solid-state interdiffusion between hexagonal W-ferrites BaM2Fe16O27and SrM2Fe16O27 (M = Ni2+, Co2+). Inorg. Mater. 39, 525–529 (2003)CrossRefGoogle Scholar
  12. 12.
    D. Lisjak, A. Žnidaršič, A. Sztanislav, M. Drofenik, A two-step synthesis of NiZn–W hexaferrites. J. Eur. Ceram. Soc. 28, 2057–2062 (2008)CrossRefGoogle Scholar
  13. 13.
    P.S. Sawadh, D.K. Kulkarni, Magnetic and electrical studies CU2-W ferrite. Mater. Chem. Phys. 63, 170–173 (2000)CrossRefGoogle Scholar
  14. 14.
    L.X. Wang, J. Song, Q.T. Zhang et al., The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27. J. Alloys. Compd. 481, 863–866 (2009)CrossRefGoogle Scholar
  15. 15.
    Y.F. Wu, Y. Huang, L. Niu et al., Pr3+-substituted W-type barium ferrite: preparation and electromagnetic properties. J. Magn. Magn. Mater. 324, 616–621 (2012)CrossRefGoogle Scholar
  16. 16.
    J.J. Xu, H.F. Zou, H.Y. Li et al., Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite. J. Alloys. Compd. 490, 552–556 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Manikandan, E. Manikandan, B. Meenatchi et al., Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Elayakumar, A. Dinesh, A. Manikandan et al., Structural, morphological, enhanced magnetic properties and antibacterial biomedical activity of rare earth element (REE) Cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. (2018).  https://doi.org/10.1016/j.jmmm.2018.09.089 Google Scholar
  19. 19.
    R. Bomila, S. Srinivasan, S. Gunasekaran, A. Manikandan, Enhanced photocatalytic degradation of methylene blue dye, opto-magnetic and antibacterial behaviour of pure and La-doped ZnO nanoparticles. J. Supercond. Nov. Magn. 31, 855–864 (2018)CrossRefGoogle Scholar
  20. 20.
    C. Sasikala, G. Suresh, N. Durairaj et al., Chemical, morphological, structural, optical, and magnetic propertiesof transition metal titanium (Ti)-doped LaFeO3 nanoparticles. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4879-1 Google Scholar
  21. 21.
    M.J. Iqbal, R.A. Khan, Enhancement of electrical and dielectric properties of Cr doped BaZn2 W-type hexaferrite for potential applications in high frequency devices. J. Alloys Compd. 478, 847–852 (2009)CrossRefGoogle Scholar
  22. 22.
    M.J. Iqbal, Farooq, Impact of Pr-Ni substitution on the electrical and magnetic properties of chemically derived nanosized hexaferrites. J. Alloys Compd. 505, 560–567 (2010)CrossRefGoogle Scholar
  23. 23.
    M.M.L. Sonia, S. Anand, V. Maria Vinosel et al., Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)CrossRefGoogle Scholar
  24. 24.
    A.T. Ravichandran, J. Srinivas, R. Karthick et al., Facile combustion synthesis, structural, morphological, optical and antibacterial studies of Bi1−xAlxFeO3 (0.0 ≤ x ≤ 0.15) nanoparticles. Ceram. Int. 44, 13247–13252 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Slimani, H. Güngüneş, M. Nawaz,et al, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Asiri, M. Sertkol, S. Guner et al., Hydrothermal synthesis of CoyZnyMn1−2yFe2O4 nanoferrites: magnetooptical investigation. Ceram. Int. 44, 5751–5759 (2018)CrossRefGoogle Scholar
  27. 27.
    F.K. Lotgering, P.H.G.M. Vromans, M.A.H. Huyberts, Permanent-magnet material obtained by sintering the hexagonal ferrite W = BaFe18O27. J. Appl. Phys. 51, 5913–5918 (1980)CrossRefGoogle Scholar
  28. 28.
    T.R. Wagner, Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19. J. Solid State Chem. 136, 120–124 (1998)CrossRefGoogle Scholar
  29. 29.
    F.R. Lv, X.S. Liu, S.J. Feng, Microstructure and magnetic properties of W-type hexagonal ferrites Ba1−xSrxFe2 2+Fe16 3+O27. Mater. Lett. 157, 277–280 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Albanese, M. Carbucicchio, G. Asti, Spin-order and magnetic properties of BaZn2Fe16O27(Zn2-W) hexagonal ferrite. Appl. Phys. 11, 81–88 (1976)CrossRefGoogle Scholar
  31. 31.
    S. Ram, J.C. Joubert, Synthesis and magnetic properties of SrZn2-W type hexagonal ferrites using a partial 2Zn2+ → Li + Fe3+ substitution: a new series of permanent magnets materials. J. Magn. Magn. Mater. 99, 133–144 (1991)CrossRefGoogle Scholar
  32. 32.
    A.P. Liplot, A. Gerard, F. Grandjean, Analysis of the superexchange interactions paths in the W-hexagonal ferrites. IEEE Trans. Magn. 18, 1463–1465 (1982)CrossRefGoogle Scholar
  33. 33.
    A. Godlyn Abraham, A. Manikandan, E. Manikandan et al., Enhanced opto-magneto properties of NixMg1−xFe2O4 (0.0 ≤ x ≤ 1.0) ferrites nano-catalysts. J. Nanoelectron. Optoelectron. 12, 1326–1333 (2017)CrossRefGoogle Scholar
  34. 34.
    E. Hema, A. Manikandan, P. Karthika et al., Magneto-optical properties of reusable spinel NixMg1−xFe2O4(0.0 ≤ x ≤ 1.0) nano-catalysts. J. Nanosci. Nanotechnol. 16, 7325–7336 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Godlyn Abraham, A. Manikandan, E. Manikandan,et al, Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)CrossRefGoogle Scholar
  36. 36.
    C. Sasikala, N. Durairaj, I. Baskaran et al., Transition metal titanium (Ti) doped LaFeO3 nanoparticles for enhanced optical structural and magnetic properties. J. Alloys Compd. 712, 870–877 (2017)CrossRefGoogle Scholar
  37. 37.
    R. Rajendran, R. Muralidharan, R.S. Gopalakrishnan et al., Controllable synthesis of single-crystalline Fe3O4 nanorice by a one-pot, surfactant-assisted hydrothermal method and its properties. Eur. J. Inorg. Chem. 2011, 5384–5389 (2011)CrossRefGoogle Scholar
  38. 38.
    Y.J. Yang, F.H. Wang et al., Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0.4Sr0.6−xNdxFe12.0−x(Nb0.5Zn0.5)xO19. J.Alloys Compd. 765, 616–623 (2018)CrossRefGoogle Scholar
  39. 39.
    I. Khan, I. Sadiq, M.N. Ashiq et al., Role of Ce–Mn substitution on structural, electrical and magnetic properties of W-type strontium hexaferrites. J.Alloys Compd. 509, 8042–8046 (2011)CrossRefGoogle Scholar
  40. 40.
    J. Tang, X.S. Liu, et.al. Microstructure and characterization of W-type hexaferrite Ba1−xLaxFe2 2+Fe16 3+O27 prepared by solid state method. J.Magn.Magn.Mater. 452, 352–359 (2018)CrossRefGoogle Scholar
  41. 41.
    R.G. Gholam, M. Marzieh et al., Microstructure, magnetic and microwave absorptive behavior of doped W-type hexaferrite nanoparticles prepared by co-precipitation method. Mater. Res. Bull. 76, 187–194 (2016)CrossRefGoogle Scholar
  42. 42.
    C.A. Stergious, G. Litsardakis, Electromagnetic properties of Ni and La doped strontium hexaferrites in the microwave region. J.Alloys Compd. 509, 6609–6615 (2011)CrossRefGoogle Scholar
  43. 43.
    Y.J. Yang, X.S. Liu, D.L. Jin, The impact of the iron content on the microstructure and magnetic properties of M-type ferrites Sr0.45Ca0.25La0.30FexCo0.25O19. Mater. Sci. Eng. B 186, 106–111 (2014)CrossRefGoogle Scholar
  44. 44.
    K. Huang, X.S. Liu, F.G. Lucia et al., Structure, magnetic and magneto-optical properties of La-Ca-Co substituted strontium ferrites. Mater. Technol. 32, 85–89 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jin Tang
    • 1
  • Xiansong Liu
    • 1
    Email author
  • Dan Li
    • 2
  • Yujie Yang
    • 3
  • Xucai Kan
    • 1
  • Khalid Mehmood Ur Rehman
    • 1
  1. 1.Engineering Technology Research Center of Magnetic Materials, School of Physics & Materials ScienceAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Public Experimental Teaching CenterPanzhihua UniversityPanzhihuaPeople’s Republic of China
  3. 3.Computational Physics Key Laboratory of Sichuan Province, School of Physics and Electronic EngineeringYibin UniversityYibinPeople’s Republic of China

Personalised recommendations