The synthesis, morphology and magnetic properties of (Fe1−xMnx)3N nanoparticles

  • Xiang Lei
  • Zhantong Ye
  • Yaqin Qie
  • Zhipeng Fan
  • Xiaodong Chen
  • Zhan Shi
  • Hua YangEmail author


The Fe3N nanoparticles with different Mn concentration were fabricated by a co-precipitation method. The structure and morphology of these as-prepared samples were carefully investigated. And we infer that the incorporation of Mn influence on the stability of Fe3N. Moreover, we explore the magnetic properties of Fe3N with different Mn concentration from vibrating sample magnetometer and analyze the reasons for the change of magnetic properties. The results demonstrate that our synthetic route provides a new way to explore the properties and structure of Fe3N incorporated with different transition metals.



This work was supported by the National Natural Science Foundation of China.

Supplementary material

10854_2018_290_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 KB)


  1. 1.
    V. Rosenband, A. Gany, Activation of combustion synthesis of aluminum nitride powder. J. Mater. Process. Technol. 147(2), 197–203 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Hawryluk, Z. Gronostajski, P. Widomski et al., Influence of the application of a PN + Cr/CrN hybrid layer on the improvement of the lifetime of hot forging tools. J. Mater. Process. Technol. 258, 226–238 (2018)CrossRefGoogle Scholar
  3. 3.
    L.A. Dobrzański, D. Pakuła, E. Hajduczek, Structure and properties of the multi-component TiAlSiN coatings obtained in the PVD process in the nitride tool ceramics. J. Mater. Process. Technol. 157–158, 331–340 (2004)Google Scholar
  4. 4.
    R.S. Ningthoujam, N.S. Gajbhiye, Synthesis, electron transport properties of transition metal nitrides and applications. Prog. Mater. Sci. 70, 50–154 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Xie, Y. Xie, Transition metal nitrides for electrocatalytic energy conversion: opportunities and challenges. Chemistry 22(11), 3588–3598 (2016)CrossRefGoogle Scholar
  6. 6.
    M.-S. Balogun, Y. Zeng, W. Qiu et al., Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. J. Mater. Chem. A 4(25), 9844–9849 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Shalom, D. Ressnig, X. Yang et al., Nickel nitride as an efficient electrocatalyst for water splitting. J. Mater. Chem. A 3(15), 8171–8177 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Huang, S. Gao, A.-M. Wu et al., Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy 31, 74–83 (2017)CrossRefGoogle Scholar
  9. 9.
    A.-M. Zieschang, J.D. Bocarsly, M. Duerrschnabel et al., Nanoscale iron nitride, epsilon-Fe3N: preparation from liquid ammonia and magnetic properties. Chem. Mater. 29(2), 621–628 (2017)CrossRefGoogle Scholar
  10. 10.
    Gajbhiye N S,Bhattacharyya S. Magnetic properties of ɛ-Fe3–xNixN nanoparticles. Phys. Stat. Solidi 1(12), 3764–3768 (2010)Google Scholar
  11. 11.
    N.S. Gajbhiye, S. Bhattacharyya, S. Sharma, Observation of exchange bias and spin-glass-like ordering in ɛ-Fe2.8Cr0.2N nanoparticles. Pramana 70(2), 367–373 (2008)CrossRefGoogle Scholar
  12. 12.
    K. Guo, D. Rau, W. Schnelle et al., High-pressure high-temperature synthesis of ɛ-Fe2IrN0.24. Zeitschrift für anorganische und allgemeine Chemie 640(5), 814–818 (2014)CrossRefGoogle Scholar
  13. 13.
    N.S. Gajbhiye, R.S. Ningthoujam, S. Bhattacharyya, Magnetic properties of Co and Ni substituted ɛ-Fe3N nanoparticles. Hyperfine Interact. 164(1), 17–26 (2005)Google Scholar
  14. 14.
    K. Guo, D. Rau, L. Toffoletti et al., Ternary metastable nitrides epsilon-Fe2TMN (TM = Co, Ni): high-pressure, high-temperature synthesis, crystal structure, thermal stability, and magnetic properties. Chem. Mater. 24(23), 4600–4606 (2012)CrossRefGoogle Scholar
  15. 15.
    P.P. Mishra, M.M. Raja, R.N. Panda, Enhancement of magnetic moment in Co substituted nanocrystalline epsilon-CoxFe3−xN (0.2 ≤ x ≤ 0.4) synthesized by modified citrate precursor route. Mater. Res. Bull. 75, 127–133 (2016)CrossRefGoogle Scholar
  16. 16.
    A.V. Gil Rebaza, A.M.M. Navarro, J. Martinez et al., First principles and experimental studies of the structural and magnetic ground state of the ternary compound MnFe3N. J. Alloys Compd. 683(Suppl. C), 32–37 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, Z. Wang, J. Cao, Predicting magnetostriction of MFe3N (M = Fe, Mn, Ir, Os, Pd, Rh) from ab initio calculations. Comput. Mater. Sci. 92(Suppl. C), 464–467 (2014)CrossRefGoogle Scholar
  18. 18.
    F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab et al., Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci. 29(16), 13737–13745 (2018)Google Scholar
  19. 19.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour et al., Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi et al., Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47(7), 3757–3769 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. Schnepp, A.E. Danks, M.J. Hollamby et al., In situ synchrotron x-ray diffraction study of the sol-gel synthesis of Fe3N and Fe3C. Chem. Mater. 27(14), 5094–5099 (2015)CrossRefGoogle Scholar
  22. 22.
    C.S. Zhang, M.F. Yan, Y. You et al., Stability and properties of alloyed epsilon-(Fe1–xMx)3N nitrides (M = Cr, Ni, Mo, V, Co, Nb, Mn, Ti and Cu): a first-principles calculations. J. Alloys Compd. 615, 854–862 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Bhattacharyya, S. Shivaprasad, N. Gajbhiye, Variation of magnetic ordering in ε-Fe3N nanoparticles. Chem. Phys. Lett. 496(1), 122–127 (2010)CrossRefGoogle Scholar
  24. 24.
    W. Yang, X. Liu, X. Yue et al., Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem Soc. 137(4), 1436–1439 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Wang, J. Yin, L. Zhao et al., Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chem. Commun. 49(29), 3022–3024 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Xiao, Y. Xu, Y. Xia et al., Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 24(Suppl. C), 121–129 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Zhou, B. Xiao, S-Q. Liu et al., Photo-fenton degradation of ammonia via a manganese–iron double-active component catalyst of graphene–manganese ferrite under visible light. Chem. Eng. J. 283, 266–275 (2016)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, B. Huang, L. Yu et al., Enhanced ferromagnetism and tunable saturation magnetization of Mn/C-codoped GaN nanostructures synthesized by carbothermal nitridation. J. Am. Chem. Soc. 130(48), 16366 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Sifkovits, H. Smolinski, S. Hellwig et al., Interplay of chemical bonding and magnetism in Fe4N, Fe3N and ζ-Fe2N. J. Magn. Magn. Mater. 204(3), 191–198 (1999)CrossRefGoogle Scholar
  30. 30.
    Z.Q. Lv, F.C. Zhang, S.H. Sun et al., First-principles study on the mechanical, electronic and magnetic properties of Fe3C. Comput. Mater. Sci. 44(2), 690–694 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations