Advertisement

Enhancing the Co gas sensing properties of ZnO thin films with the decoration of MWCNTs

  • F. ÖzütokEmail author
  • Irmak Karaduman Er
  • S. Acar
  • S. Demiri
Article
  • 65 Downloads

Abstract

Multi-walled carbon nanotubes (MWCNTs) onto flower-like patterned ZnO seed layers were prepared by spin coating method. The etching of the MWCNTs was examined by HCl acid treatment. The effect of structural, morphological and elemental properties of the ZnO/MWCNTs were determined by XRD, SEM, and EDX, respectively. The gas sensing properties of ZnO seed layer and MWCNT/ZnO nanocomposites were studied as a function of operating temperature and gas concentration. The incorporation of MWCNT were given results such as reducing the operating temperature to 70 °C and enhancement in sensor response for 25 ppm CO gas. It was obtained that the highest sensing response of 62% at 70 °C for raw-MWCNTs/ZnO sensor as compared to etched-MWCNT/ZnO and ZnO sensor which gave a sensing response of 19% and 21% at operating temperature of 70 °C and 150 °C, respectively. Results showed that the deposition of metal oxide sensors with MWCNT is a promising strategy for improvement of CO gas sensing properties.

References

  1. 1.
    R. Dhahri, M. Hjiri, L.El Mir, A. Bonavita, D. Iannazzo, M. Latino, N. Donato, S.G. Leonardi, G. Neri, J. Phys. D (2016)  https://doi.org/10.1088/0022-3727/49/13/135502 Google Scholar
  2. 2.
    Y. Aubard, N. Nadores, M.Cantaloube, Br. J. Obstet. Gynaecol. (2000)  https://doi.org/10.1016/S0301-2115(00)00282-7 Google Scholar
  3. 3.
    Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, S. Zhu, Ceram. Int. (2018)  https://doi.org/10.1016/j.ceramint.2017.12.038 Google Scholar
  4. 4.
    M. Subası, B. Karsli, P. Yarbil, S. Zengin, Am. J. Emerg. Med. (2012)  https://doi.org/10.1016/j.ajem.2012.03.011 Google Scholar
  5. 5.
    X.J. Wang, W. Wang, Y.-L. Liu, Sens. Actuators B (2012)  https://doi.org/10.1016/j.snb.2012.04.084 Google Scholar
  6. 6.
    A. Nebatti, C. Pflitsch, B. Atakan, Thin Solid Films (2017)  https://doi.org/10.1016/j.tsf.2017.07.002 Google Scholar
  7. 7.
    S.K. Swain, I. Jena, Asian J. Chem. (2010)  https://doi.org/10.5772/18423 Google Scholar
  8. 8.
  9. 9.
    N.D. Alharbi, M.S. Ansari, N. Salah, S. Khayyat, Z.H. Khan, J. Nanosci. Nanotechnol. (2016)  https://doi.org/10.1166/jnn.2016.10629 Google Scholar
  10. 10.
    R.C. J.Khanderi, A.Gurlo Hoffmann, J.J. Schneider, J. Mater. Chem. (2009)  https://doi.org/10.1039/b904822g Google Scholar
  11. 11.
    M. T.Hojati.R.Afzalzadeh Ebrahimi, Mater. Chem. Phys. (2018)  https://doi.org/10.1016/j.matchemphys.2017.12.043 Google Scholar
  12. 12.
    N.L.W. Septiani, B.Y. Nugraha, H.K. Dipojono, Appl. Phys. A. (2017)  https://doi.org/10.1007/s00339-017-0803-y Google Scholar
  13. 13.
    A. Ayeshamariam, D. Saravanakkumar, M. Kashif, S. Sivaranjani, B. Ravikuma, Mech. Adv. Mater. Mod. Process. (2016)  https://doi.org/10.1186/s40759-016-0010-0 Google Scholar
  14. 14.
    E.C. Dandley, A.J. Taylor, K.S. Duke, M.D. Ihrie, K.A. Shipkowski, G.N. Parsons, J.C. Bonner, Part Fibre Toxicol. (2016)  https://doi.org/10.1186/s12989-016-0141-9 Google Scholar
  15. 15.
    M.T. Humayun, R. Divan, L. Stan, A. Gupta, D. Rosenmann, L. Gundel, P.A. Solomon, I. Paprotny, J. Vac. Sci. Technol. B (2015)  https://doi.org/10.1116/1.4931694 Google Scholar
  16. 16.
    P. Potirak, W. Pecharapa, W. Techitdheera, J. Exp. Nanosci. (2014)  https://doi.org/10.1080/17458080.2013.820848 Google Scholar
  17. 17.
    A. Ramar, T. Soundappan, S. Chen1, M. Rajkumar, S. Ramiah, Int. J. Electrochem. Sci., 7, (2012)Google Scholar
  18. 18.
    R. Vyas, S. Sharma, P. Gupta, A.K. Prasad, A.K. Tyagi, K. Sachdev, S.K. Sharma, Adv. Mater. Res. (2012)  https://doi.org/10.4028/www.scientific.net/AMR.585.235 Google Scholar
  19. 19.
    F. Özütok, S. Demiri, Digest J. Nanomater. Biostruct. 12, 309–315 (2017)Google Scholar
  20. 20.
    I. Karaduman, E. Er, H. Celikkan, S. Acar, Sens. Actuators B (2015)  https://doi.org/10.1016/j.snb.2015.07.063 Google Scholar
  21. 21.
    I. Karaduman, M. Demir, D.E. Yıldız, S. Acar, Phys. Scr. 90, 055802 (2015)CrossRefGoogle Scholar
  22. 22.
    S.H. Largani, M.A. Pasha, Int. Nano Lett. (2017)  https://doi.org/10.1007/s40089-016-0197-4 Google Scholar
  23. 23.
    N.K. Allouche, T.B. Nasr, N.T. Kamouna, C. Guasch, Mater. Chem. Phys. (2010)  https://doi.org/10.1016/j.matchemphys.2010.05.026 Google Scholar
  24. 24.
    M. Lu, W. Cao, H. Shi, X. Fang, J. Yang, Z. Hou, H. Jin, W. Wang, J. Yuan, M.S. Cao, J. Mater. Chem. A (2014)  https://doi.org/10.1039/c4ta01715c Google Scholar
  25. 25.
    F. Avilés, J.V. Cauich-Rodríguez, J.A. Rodríguez-González, A. May-Pat, Express Polym. Lett. 5(9), 766–776 (2011)CrossRefGoogle Scholar
  26. 26.
    R. Das, M.E. Ali, S.B.A. Hamid, M.S.M. Annuar, S. Ramakrishna, J. Nanomater. (2014)  https://doi.org/10.1155/2014/945172 Google Scholar
  27. 27.
    B.-Y. Wang, D.-S. Lim, Y.-J. Oh, Jpn. J. Appl. Phys. 52, 101103 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Narjinary, P. Rana, A. Sen, M. Pal, Mater. Des. 115, 158–164 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Kim, M. Hong, H.W. Jang, S. Yoon, H. Park, Thin Solid Films (2013)  https://doi.org/10.1016/j.tsf.2012.07.062 Google Scholar
  30. 30.
    S. Maity, N. Sankar Das, K. Kumar, Chattopadhyay, Phys. Status Solidi B 250(9), 1919–1925 (2013)CrossRefGoogle Scholar
  31. 31.
    E.T. Mombeshora, P.G. Ndungu, A.L. Leigh Jarvis, V.O. Nyamori, Int. J. Energy Res. 41, 1182–1201 (2017)CrossRefGoogle Scholar
  32. 32.
    Q.-Q. Fan, Z.-Y. Qin, X. Liang, L. Li, W.-H. Wu, M.-F. Zhua, J. Exp. Nanosci. 5(4), 337–347 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y.E. Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid, Nanomaterials (2017)  https://doi.org/10.3390/nano7040074
  34. 34.
    S. Galioglu, I. Karaduman, T. Çorlu, B. Akata, M.A. Yıldırım, A. Ateş, S. Acar, J. Mater. Sci. 29(2), 1356–1368 (2018)Google Scholar
  35. 35.
    S.B. Naghadeh, S. Vahdatifar, Y. Mortazavi, A.A. Khodadadi, A.Abbasi, Sen. Actuators B (2015)  https://doi.org/10.1016/j.snb.2015.09.088 Google Scholar
  36. 36.
    Y. C.Dai.C. Chen.C.Kuo Wu, Sensors (2010)  https://doi.org/10.3390/s100301753
  37. 37.
    R. Ionescu, E.H. Espinosa, R. Leghrib, A. Felten, J.J. Pireaux, R. Erni, G. Van Tendeloo, C.Bittencourt, N. Canellas, E. Llobet, Sensors and Actuators B (2008)  https://doi.org/10.1016/j.snb.2007.11.001
  38. 38.
    D. Han, L. Zhai, F. Gu, Z. Wang, Sens. Actuators B 262, 655–663 (2018)CrossRefGoogle Scholar
  39. 39.
    S. Benkara, S. Zerkout, H. Ghamrid, Mater. Sci. Semicond. Process. 16(5), 1271–1279 (2013)CrossRefGoogle Scholar
  40. 40.
    G. Karim-Nezhad, A. Sarkary, Z. Khorablou, P.S. Dorraji, Iran. J. Pharm. Res. 17(1), 52–62 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Science FacultyÇOMUÇanakkaleTurkey
  2. 2.Department of Physics, Science FacultyGazi UniversityAnkaraTurkey
  3. 3.Faculty of Technological SciencesMother Teresa UniversitySkopjeMacedonia

Personalised recommendations