Performance of amorphous CoSx/oxygen vacancies ZnO heterojunction photocatalytic hydrogen evolution

  • Yanru Li
  • Jing XuEmail author
  • Zeying Liu
  • Hai Yu


CoSx/OV–ZnO is prepared by two-step hydro-thermal method. The photocatalytic hydrogen evolution amount of ZnO samples is near to zero. The novel composite photocatalyst CoSx/OV–ZnO have high photocatalytic liveness. It is up to 256 µmol under visible light irradiation for 5 h, which is about increased 30% than CoSx/ZnO. The hydrogen production number of CoSx/OV–ZnO do not reduce obviously after 15 h irradiation, it exhibits high photocatalytic stability. The morphologies, surface features and physical characteristics of catalyst are analysed by scanning electron microscope (SEM), X-ray diffraction, X-ray energy spectrum (XPS), Brunner–Emmet–Teller (BET), and fluorescence spectra etc. The SEM results demonstrates amorphous CoSx is uniformly diffused on the hexagonal wurtzite OV–ZnO. The XPS shows the successful synthesis of ZnO oxygen vacancies. The CoSx/OV–ZnO has better superficial area and pore volume (BET), which is conducive to the adsorption of EY molecules. The ZnO electron transfer and the charge separation are obviously improved (fluorescence and electrochemical). Accordingly, CoSx/OV–ZnO might be a latent new photocatalyst.



This work was supported by Ningxia Higher Institutions Scientific Research Program (NGY2016146), and the Graduate Student Innovation Project at North MinZu University (YCX18083).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    P. Wang, S. Zhan, H. Wang, Y. Xia, Appl. Catal. B 230, 210–219 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Alghamdi, Adv. Mater. 29, 20 (2017)CrossRefGoogle Scholar
  3. 3.
    S.K. Jin, J.W. Oh, S.I. Woo, Catal. Today 293–294, 8–14 (2017)Google Scholar
  4. 4.
    J.F.D. Costa-Serra, R. Guil-López, A. Chica, Int. J. Hydrog. Energy 35, 6709–6716 (2010)CrossRefGoogle Scholar
  5. 5.
    R.M. Kakhki, R. Tayebee, F. Ahsani, J. Mater. Sci. Mater. Electron. 28(8), 1–12 (2017)Google Scholar
  6. 6.
    Z. Wu, Y. Li, L. Gao, S. Wang, G. Fu, Dalton Trans. 45, 11145–11149 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Wang, Y. Xia, H. Zhao, G. Wang, Appl. Catal. B 206, 406–416 (2017)CrossRefGoogle Scholar
  8. 8.
    B.M. Rajbongshi, S.K. Samdarshi, B. Boro, J. Mater. Sci. Mater. Electron. 26(1), 377–384 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Salavati-Niasari, F. Davar, M. Mazaheri. Mater. Lett. 62(12–13), 1890–1892 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Salavati-Niasari, F. Davar, A. Khansari, J. Alloys Compd. 509, 61–65 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Faisal, A.A. Ismail, A.A. Ibrahim, H. Bouzid, S.A. Al-Sayari, Chem. Eng. J. 229, 225–233 (2013)CrossRefGoogle Scholar
  12. 12.
    C.J. Chang, K.L. Huang, J.K. Chen, K.W. Chu, J. Taiwan. Inst. Chem. Eng. 55, 82–89 (2015)CrossRefGoogle Scholar
  13. 13.
    Z. Dong, Y. Wu, N. Thirugnanam, Appl. Surf. Sci. 430, 293–300 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Pandiselvi, H. Fang, X. Huang, J. Wang, X. Xu, L. Tao, J. Hazard. Mater. 314, 67–77 (2016)CrossRefGoogle Scholar
  15. 15.
    S.B. Narendranath, S.V. Thekkeparambil, L. George, S. Thundiyil, R.N. Devi, J. Mol. Catal. A 415, 82–88 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Hu, L. Yang, G. Fan, F. Li, J. Catal. 340, 184–195 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Appl. Catal. B 206, 300–307 (2017)CrossRefGoogle Scholar
  18. 18.
    X.Y. Feng, P.F. Wang, J. Hou, J. Qian, J. Hazard. Mater. 351, 196–205 (2018)CrossRefGoogle Scholar
  19. 19.
    V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Adv. Funct. Mater. 21, 3744–3752 (2011)CrossRefGoogle Scholar
  20. 20.
    Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Adv. Mater. 29, 1606207 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Adv. Mater. 29, 1606793 (2017)CrossRefGoogle Scholar
  22. 22.
    W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Nano Energy 43, 110–116 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Archana, K. Manjunath, G. Nagaraju, K.B.C. Sekhar, N. Kottam, Int. J. Hydrog. Energy 42, 5125–5131 (2017)CrossRefGoogle Scholar
  24. 24.
    T. Jiang, S. Yang, P. Dai, X. Yu, Z. Bai, M. Wu, Electrochim. Acta 261, 143–150 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Yang, F. Li, W. Li, W. Gao, H. Wen, J. Li, Int. J. Hydrog. Energy 42, 6665–6673 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Zhu, S.B. Jo, S. Ye, K. Ullah, Z.D. Meng, W.C. Oh, J. Ind. Eng. Chem. 22, 264–271 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Ma, J. Li, C. An, J. Feng, Y. Chi, J. Liu, Nano Res. 9(8), 2284–2293 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.P. Xie, Y. Yang, G. Wang, G. Liu, J. Colloid Interface Sci. 503, 198–204 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Zinatlooajabshir, M.S. Morassaei, M. Salavatiniasari, J. Colloid Interface Sci. 497, 298–308 (2017)CrossRefGoogle Scholar
  30. 30.
    M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 27(11), 1–9 (2016)CrossRefGoogle Scholar
  31. 31.
    Y. Lei, J. Hou, F. Wang, X. Ma, Z. Jin, J. Xu, Appl. Surf. Sci. 420, 456–464 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Salavati-Niasari, F. Davar, Z. Fereshteh, Chem. Eng. J. 146(3), 498–502 (2009)CrossRefGoogle Scholar
  33. 33.
    X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Appl. Catal. B 229, 41–51 (2018)CrossRefGoogle Scholar
  34. 34.
    Z. Guan, P. Wang, Q. Li, Y. Li, X. Fu, J. Yang, Chem. Eng. J. 327, 397–405 (2017)CrossRefGoogle Scholar
  35. 35.
    W. Liu, X. Tang, Z. Tang, J. Appl. Phys. 114, 123911 (2013)CrossRefGoogle Scholar
  36. 36.
    G. Ai, R. Mo, H. Li, J. Zhong, Nanoscale 7, 6722–6728 (2015)CrossRefGoogle Scholar
  37. 37.
    M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mol. Liq. 220, 902–909 (2016)CrossRefGoogle Scholar
  38. 38.
    H. Khojasteh, M. Salavati-Niasari, A. Abbasi, J. Mater. Sci. Mater. Electron. 27(2), 1261–1269 (2016)CrossRefGoogle Scholar
  39. 39.
    H. Safajou, H. Khojasteh, M. Salavatiniasari, J. Colloid Interface Sci. 498, 423–432 (2017)CrossRefGoogle Scholar
  40. 40.
    X. Hao, Z. Jin, H. Yang, G. Lu, Y. Bi, Appl. Catal. B 210, 45–56 (2017)CrossRefGoogle Scholar
  41. 41.
    D. Liu, Z. Jin, H. Li, G. Lu, Appl. Surf. Sci. 423, 255–265 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, J. Clean. Prod. 198, 11–18 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Kumar, N.L. Reddy, A. Kumar, V. Krishnan, Int. J. Hydrog. Energy 43, 3988–4002 (2017)CrossRefGoogle Scholar
  44. 44.
    H. Yu, J. Xu, H. Guo, Y. Li, Z. Liu, Z. Jin, RSC Adv. 7, 56417–56425 (2017)CrossRefGoogle Scholar
  45. 45.
    H. Yu, X. Huang, P. Wang, J. Yu, J. Phys. Chem. C 120(7), 3722–3730 (2016)CrossRefGoogle Scholar
  46. 46.
    X. Hao, Y. Wang, J. Zhou, Z. Cui, Y. Wang, Z. Zou, Appl. Catal. B 221, 302–311 (2018)CrossRefGoogle Scholar
  47. 47.
    H. Yang, Z. Jin, H. Hu, Y. Bi, G. Lu, Appl. Surf. Sci. 427, 587–597 (2018)CrossRefGoogle Scholar
  48. 48.
    M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Adv. Powder Technol. 28, 697–705 (2017)CrossRefGoogle Scholar
  49. 49.
    M.S. Morassaei, A. Salehabadi, A. Akbari, S.H. Tavassoli, J. Alloys Compd. 769, 732–739 (2018)CrossRefGoogle Scholar
  50. 50.
    B. Sambandam, R.J. Michael, P.T. Manoharan, Nanoscale 7, 13935 (2015)CrossRefGoogle Scholar
  51. 51.
    S. Kumar, N.L. Reddy, H.S. Kushwaha, A. Kumar, K. Bhattacharyya, A. Halder, ChemSusChem. 10(18), 3588–3603 (2017)CrossRefGoogle Scholar
  52. 52.
    H. Safardousthojaghan, M. Salavatiniasari, J. Clean. Prod. 148, 31–36 (2017)CrossRefGoogle Scholar
  53. 53.
    P. Wang, T. Wu, C. Wang, J. Hou, J. Qian, Y. Ao, Acs. Sustain. Chem. Eng. 5, 7670–7677 (2017)CrossRefGoogle Scholar
  54. 54.
    X. Hao, Z. Jin, S. Min, G. Lu, RSC Adv. 6(28), 23709–23717 (2016)CrossRefGoogle Scholar
  55. 55.
    S. Min, Y. Lei, H. Sun, J. Hou, F. Wang, Mol. Catal. 440, 190–198 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanPeople’s Republic of China
  2. 2.Key Laboratory of Chemical Engineering & Technology, North Minzu UniversityThe State National Affairs Commission of People’s Republic of ChinaYinchuanPeople’s Republic of China

Personalised recommendations