Advertisement

Tuning electric charge scattering in YBCO single crystals via irradiation with MeV electrons

  • R. V. Vovk
  • G. Ya. Khadzhai
  • O. V. DobrovolskiyEmail author
Article

Abstract

Irradiation with electrons is an efficient approach to inducing a large number of defects with a minimal impact on the material itself. Analysis of the energy transfer from an accelerated particle smashing into the crystal lattice shows that only electrons with MeV energies produce point defects in the form of interstitial ions and vacancies that form perfect scattering centers. Here, we investigate the changes in the resistive characteristics of YBCO single crystals from the 1-2-3 system after several steps of low-temperature irradiation with \(0.5-2.5\) MeV electrons and irradiation doses of up to \(8.8\times 10^{18}\) \(\hbox {cm}^{-2}\). The penetration depth of such electrons is much larger than the crystal thickness. We reveal that defects appearing in consequence of such electron irradiation not only increase the residual resistance, but they affect the phonon spectrum of the system and lower the superconducting transition temperature linearly with increase of the irradiation dose. Furthermore, the irradiation-induced defects are distributed non-uniformly, that manifests itself via a broadening of the superconducting transition. Interestingly, the excess conductivity remains almost unaffected after such electron irradiation.

Notes

Acknowledgements

Research leading to these results received funding from the European Commission in the framework of the program Marie Sklodowska-Curie Actions — Research and Innovation Staff Exchange (MSCA-RISE) under Grant Agreement No. 644348 (MagIC).

References

  1. 1.
    J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal, Physica C 167(5–6), 571 (1990).  https://doi.org/10.1016/0921-4534(90)90676-6 CrossRefGoogle Scholar
  2. 2.
    G.Y. Khadzhai, R.V. Vovk, N.R. Vovk, S.N. Kamchatnaya, O.V. Dobrovolskiy, Physica C 545(Supplement C), 14 (2018).  https://doi.org/10.1016/j.physc.2017.11.015 CrossRefGoogle Scholar
  3. 3.
    W. Lang, J.D. Pedaring, Ion Irradiation of High-Temperature Superconductors and Its Application for Nanopatterning (Springer, Heidelberg, 2010), pp. 81–104Google Scholar
  4. 4.
    R. Vovk, G. Khadzhai, O. Dobrovolskiy, N. Vovk, Z. Nazyrov, J. Mater. Sci. 26(3), 1435 (2015).  https://doi.org/10.1007/s10854-014-2558-y Google Scholar
  5. 5.
    C.W. Chu, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, Phys. Rev. Lett. 58, 405 (1987).  https://doi.org/10.1103/PhysRevLett.%2058.405 CrossRefGoogle Scholar
  6. 6.
    R.V. Vovk, N.R. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, Curr. Appl. Phys. 14(12), 1779 (2014).  https://doi.org/10.1016/j.cap.2014.10.002 CrossRefGoogle Scholar
  7. 7.
    L.M. Ferreira, P. Pureur, H.A. Borges, P. Lejay, Phys. Rev. B 69, 212505 (2004).  https://doi.org/10.1103/PhysRevB.69.212505 CrossRefGoogle Scholar
  8. 8.
    A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, S.N. Kamchatnaya, D.M. Sergeev, Curr. Appl. Phys. 16(9), 931 (2016).  https://doi.org/10.1016/j.cap.2016.05.014 CrossRefGoogle Scholar
  9. 9.
    Y. Fang, D. Yazici, B.D. White, M.B. Maple, Phys. Rev. B 92, 094507 (2015).  https://doi.org/10.1103/PhysRevB.92.094507 CrossRefGoogle Scholar
  10. 10.
    A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, Z. Nazyrov, S. Kamchatnaya, D. Sergeyev, Physica B 493, 58 (2016).  https://doi.org/10.1016/j.physb.2016.04.015 CrossRefGoogle Scholar
  11. 11.
    A.V. Bondarenko, A.A. Prodan, M.A. Obolenskii, R.V. Vovk, T.R. Arouri, Low Temp. Phys. 27(5), 339 (2001).  https://doi.org/10.1063/1.1374717 CrossRefGoogle Scholar
  12. 12.
    R.V. Vovk, A.L. Solovjov, Low Temp. Phys. 44(2), 81 (2018).  https://doi.org/10.1063/1.5020905 CrossRefGoogle Scholar
  13. 13.
    A. Lara, F.G. Aliev, A.V. Silhanek, V.V. Moshchalkov, Sci. Rep. 5, 9187 (2015).  https://doi.org/10.1038/srep09187 CrossRefGoogle Scholar
  14. 14.
    O.V. Dobrovolskiy, Rapid Res. Lett. 0(0), 1800223 (2018).  https://doi.org/10.1002/pssr.201800223 Google Scholar
  15. 15.
    D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors I (Word Scientific, Singapore, 1989)Google Scholar
  16. 16.
    Y. Yan, M. Blanchin, G. Fuchs, J. Less Commun. Met. 164–165, 215 (1990).  https://doi.org/10.1016/0022-5088(90)90217-8 CrossRefGoogle Scholar
  17. 17.
    M. Akhavan, Physica B 321(1–4), 265 (2002).  https://doi.org/10.1016/S0921-4526(02)00860-8 CrossRefGoogle Scholar
  18. 18.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, A. Chroneos, Physica C 516, 58 (2015).  https://doi.org/10.1016/j.physc.2015.06.011 CrossRefGoogle Scholar
  19. 19.
    A.C. Damask, G.J. Dienes, Point Defects in Metals (Gordon & Breach Science Publishers Ltd, London, 1963)Google Scholar
  20. 20.
    G. Ghigo, G.A. Ummarino, L. Gozzelino, R. Gerbaldo, F. Laviano, D. Torsello, T. Tamegai, Sci. Rep. 7(1), 13029 (2017).  https://doi.org/10.1038/s41598-017-13303-5 CrossRefGoogle Scholar
  21. 21.
    E.H. Brandt, Rep. Prog. Phys. 58(11), 1465 (1995)CrossRefGoogle Scholar
  22. 22.
    M. Baert, V.V. Metlushko, R. Jonckheere, V.V. Moshchalkov, Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995).  https://doi.org/10.1103/PhysRevLett.%2074.3269 CrossRefGoogle Scholar
  23. 23.
    K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, V.V. Moshchalkov, Science 274(5290), 1167 (1996).  https://doi.org/10.1126/science.274.5290.1167 CrossRefGoogle Scholar
  24. 24.
    A. Castellanos, R. Wördenweber, G. Ockenfuss, A.V.D. Hart, K. Keck, Appl. Phys. Lett. 71(7), 962 (1997).  https://doi.org/10.1063/1.119701 CrossRefGoogle Scholar
  25. 25.
    A. Crisan, A. Pross, D. Cole, S.J. Bending, R. Wördenweber, P. Lahl, E.H. Brandt, Phys. Rev. B 71, 144504 (2005).  https://doi.org/10.1103/PhysRevB.71.144504 CrossRefGoogle Scholar
  26. 26.
    O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, J. Supercond. Nov. Magn. 24, 375 (2011).  https://doi.org/10.1007/s10948-010-1055-7 CrossRefGoogle Scholar
  27. 27.
    G. Zechner, F. Jausner, L.T. Haag, W. Lang, M. Dosmailov, M.A. Bodea, J.D. Pedarnig, Phys. Rev. Appl. 8, 014021 (2017).  https://doi.org/10.1103/PhysRevApplied.%208.014021 CrossRefGoogle Scholar
  28. 28.
    O.V. Dobrovolskiy, Physica C 533, 80 (2017).  https://doi.org/10.1016/j.physc.2016.07.008 CrossRefGoogle Scholar
  29. 29.
    A. Pautrat, J. Scola, C. Goupil, C. Simon, C. Villard, B. Domengès, Y. Simon, C. Guilpin, L. Méchin, Phys. Rev. B 69, 224504 (2004).  https://doi.org/10.1103/PhysRevB.69.224504 CrossRefGoogle Scholar
  30. 30.
    M. Kompaniiets, O.V. Dobrovolskiy, C. Neetzel, F. Porrati, J. Brötz, W. Ensinger, M. Huth, Appl. Phys. Lett. 104, 052603 (2014).  https://doi.org/10.1063/1.4863980 CrossRefGoogle Scholar
  31. 31.
    A. Lara, O.V. Dobrovolskiy, J.L. Prieto, M. Huth, F.G. Aliev, Appl. Phys. Lett. 105(18), 182402 (2014).  https://doi.org/10.1063/1.4900789 CrossRefGoogle Scholar
  32. 32.
    O.V. Dobrovolskiy, M. Kompaniiets, R. Sachser, F. Porrati, C. Gspan, H. Plank, M. Huth, Beilstein J. Nanotechnol. 6, 1082 (2015).  https://doi.org/10.3762/bjnano.6.109 CrossRefGoogle Scholar
  33. 33.
    O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, Appl. Phys. Lett. 107, 162603 (2015).  https://doi.org/10.1063/1.4934487 CrossRefGoogle Scholar
  34. 34.
    O.V. Dobrovolskiy, M. Huth, V. Shklovskij, R.V. Vovk, Sci. Rep. 7, 13740 (2017).  https://doi.org/10.1038/s41598-017-14232-z CrossRefGoogle Scholar
  35. 35.
    F. Rullier-Albenque, H. Alloul, R. Tourbot, Phys. Rev. Lett. 91, 047001 (2003).  https://doi.org/10.1103/PhysRevLett.%2091.047001 CrossRefGoogle Scholar
  36. 36.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Solid State Commun. 282, 5 (2018).  https://doi.org/10.1016/j.ssc.2018.07.005 CrossRefGoogle Scholar
  37. 37.
    Y. Mizukami, M. Konczykowski, Y. Kawamoto, S. Kurata, S. Kasahara, K. Hashimoto, V. Mishra, A. Kreisel, Y. Wang, P.J. Hirschfeld, Y. Matsuda, T. Shibauchi, Nat. Commun. 5, 5657 (2014)CrossRefGoogle Scholar
  38. 38.
    N.A. Azarenkov, V.N. Voevodin, R.V. Vovk, G.Y. Khadzhai, S.V. Lebedev, V.V. Sklyar, S.N. Kamchatnaya, O.V. Dobrovolskiy, J. Mater. Sci. 28, 15886 (2017).  https://doi.org/10.1007/s10854-017-7483-4 Google Scholar
  39. 39.
    J. Giapintzakis, W.C. Lee, J.P. Rice, D.M. Ginsberg, I.M. Robertson, R. Wheeler, M.A. Kirk, M.O. Ruault, Phys. Rev. B 45, 10677 (1992).  https://doi.org/10.1103/PhysRevB.45.10677 CrossRefGoogle Scholar
  40. 40.
    R. Rangel, D. Galvan, G. Hirata, E. Adem, F. Morales, M. Maple, Supercond. Sci. Technol. 12(5), 264 (1999)CrossRefGoogle Scholar
  41. 41.
    G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).  https://doi.org/10.1103/RevModPhys.%2066.1125 CrossRefGoogle Scholar
  42. 42.
    F. Dworschak, U. Dedek, Y. Petrusenko, Physica C 235–240, 1343 (1994).  https://doi.org/10.1016/0921-4534(94)91896-1 CrossRefGoogle Scholar
  43. 43.
    F. Rullier-Albenque, P.A. Vieillefond, H. Alloul, A.W. Tyler, P. Lejay, J.F. Marucco, Eur. Phys. Lett. 50(1), 81 (2000)CrossRefGoogle Scholar
  44. 44.
    A.V. Bondarenko, A.A. Prodan, Y.T. Petrusenko, V.N. Borisenko, F. Dworschak, U. Dedek, Phys. Rev. B 64, 092513 (2001).  https://doi.org/10.1103/PhysRevB.64.092513 CrossRefGoogle Scholar
  45. 45.
    F. Rullier-Albenque, H. Alloul, F. Balakirev, C. Proust, Eur. Phys. Lett. 81(3), 37008 (2008)CrossRefGoogle Scholar
  46. 46.
    U. Welp, W.K. Kwok, G.W. Crabtree, K.G. Vandervoort, J.Z. Liu, Phys. Rev. Lett. 62, 1908 (1989).  https://doi.org/10.1103/PhysRevLett.%2062.1908 CrossRefGoogle Scholar
  47. 47.
    T.A. Friedmann, J.P. Rice, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 39, 4258 (1989).  https://doi.org/10.1103/PhysRevB.39.4258 CrossRefGoogle Scholar
  48. 48.
    Y.M. Kagan, M.P. Gernov, J. Exp. Theor. Phys. 50, 1107 (1966)Google Scholar
  49. 49.
    M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev, Low Temp. Phys. 32(6), 571 (2006).  https://doi.org/10.1063/1.2215373 CrossRefGoogle Scholar
  50. 50.
    L. Colquitt, J. Appl. Phys. 36(8), 2454 (1965).  https://doi.org/10.1063/1.1714510 CrossRefGoogle Scholar
  51. 51.
    N.V. Anshukova et al., JETP Lett. 48, 152 (1988)Google Scholar
  52. 52.
    V.I. Khotkevich, B.A. Merisov, M.A. Ermolaev, A.V. Krasnokutskiy, Fiz. Nizk. Temp. 9, 1056 (1983)Google Scholar
  53. 53.
    V.M. Apalkov, M.E. Portnoi, Phys. Rev. B 65, 125310 (2002).  https://doi.org/10.1103/PhysRevB.65.125310 CrossRefGoogle Scholar
  54. 54.
    R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 68, 134508 (2003).  https://doi.org/10.1103/PhysRevB.68.134508 CrossRefGoogle Scholar
  55. 55.
    I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20(7), 498 (1994).  https://doi.org/10.1063/1.592763 Google Scholar
  56. 56.
    R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. Lett. 91, 235302 (2003).  https://doi.org/10.1103/PhysRevLett.%2091.235302 CrossRefGoogle Scholar
  57. 57.
    P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011).  https://doi.org/10.1103/PhysRevB.84.104507 CrossRefGoogle Scholar
  58. 58.
    A.A. Abrikosov, L.P. Gorkov, J. Exp. Theor. Phys. 39, 1781 (1960)Google Scholar
  59. 59.
    B.N. Rolov, V.E. Yurkevich, Physics of Smeared Phase Transitions (RGU, Rostov-on-Don, 1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. V. Vovk
    • 1
  • G. Ya. Khadzhai
    • 1
  • O. V. Dobrovolskiy
    • 1
    • 2
    Email author
  1. 1.V. Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.Physikalisches Institut Goethe UniversityFrankfurt am MainGermany

Personalised recommendations