Advertisement

Novel double-layered photoanodes based on porous-hollow TiO2 microspheres and La(OH)3:Yb3+/Er3+ for highly efficient dye-sensitized solar cells

  • Zhen Hu
  • Li ZhaoEmail author
  • Haiyong Guo
  • Shimin WangEmail author
  • Wenlu Li
  • Xiaojie Yang
  • Binghai Dong
  • Li Wan
Article
  • 49 Downloads

Abstract

A novel composite double-layer film was developed using TiO2/La(OH)3:Yb3+/Er3+ nanoparticles (P25/UC) and porous-hollow TiO2 microspheres (PHTS) for highly efficient dye-sensitized solar cells (DSSCs). P25/UC was used as the first layer and coated onto fluorine-doped tin oxide glass substrate to create a good contact and upconversion effect. The P25/UC layer can absorb and convert infrared light into visible red and green light, increasing light utilization. PHTS has a large size and a high specific surface area, was deposited onto the surface of the P25/UC film to improve the light scattering performance and dye adsorption of solar cells. The P25/UC composite double-layer film (P25/UC + PHTS) achieved the highest short-circuit current density of 20.33 mA/cm2 and photoelectron conversion efficiency of 8.89% due to the synergistic effect of the upconversion layers and light-scattering layers, which increased by 51.26% and 38.04% compared with that of the pure P25 film photoelectrode.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51572072), (5170021087) and China Postdoctoral Science Foundation (2017M622384).

References

  1. 1.
    K. Fan, J.G. Yu, W.K. Ho, Mater. Horiz. 4, 319 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Dinari, M.M. Momeni, M. Goudarzirad, J. Mater. Sci. 51, 2964 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Yu, Y.L. Yang, R.Q. Fan, P. Wang, Y.W. Dong, Nanoscale 8, 4173 (2016)CrossRefGoogle Scholar
  4. 4.
    W.X. Hu, P. Yu, Z.M. Zhang, W. Shen, M. Li, R.X. He, J. Mater. Sci. 52, 1235 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Zhao, C. Zhong, Y.L. Wang, S.M. Wang, B.H. Dong, L. Wan, J. Power Sources 292, 49 (2015)CrossRefGoogle Scholar
  6. 6.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  7. 7.
    R. Rajeswari, K. Susmitha, C.K. Jayasankar, M. Raghavender, L. Giribabu, Sol. Energy 157, 956 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  9. 9.
    F.L. Meng, Y. Luo, Y.L. Zhou, J.W. Zhang, Y.Z. Zheng, G.Z. Cao, X. TaoIntegrated, J. Power Sources 316, 207 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, H. Shen, W. Guo, S.H. Wang, C.T. Zhu, F. Xue, J.F. Hou, H.Q. Su, Z.B. Yuan, J. Power Sources 226, 47 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, J. Mater. Sci. 29, 6183 (2018)Google Scholar
  12. 12.
    G. Dai, L. Zhao, S.M. Wang, J.H. Hu, B.H. Dong, H.B. Lu, J. Li, J. Alloy. Compd. 539, 264 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Tayyab, M.H. Yuvaraj, A. Venkatraman, J. Mater. Sci. 29, 1209 (2018)Google Scholar
  14. 14.
    Y.M. Hunge, M.A. Mahadik, R.N. Bulakhe, S.P. Yadav, J.J. Shim, A.V. Moholkar, C.H. Bhosale, J. Mater. Sci. 28, 17976 (2017)Google Scholar
  15. 15.
    L.L. Song, A.X. Wei, Z.Y. Lia, J. Liu, Y. Zhao, Z.M. Xiao, Mater. Res. Bull. 88, 1 (2017)CrossRefGoogle Scholar
  16. 16.
    D.G. Yin, Y.M. Liu, J.X. Tang, F.F. Zhao, Z.W. Chen, T.T. Zhang, X.Y. Zhang, N. Chang, C.L. Wu, D.W. Chen, M.H. Wu, Dalton Trans. 45, 13392 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Han, M. Wang, D.Y. Li, J.Y. Bai, G.W. Diao, Sol. Energy Mater. Sol. C 160, 54 (2017)CrossRefGoogle Scholar
  18. 18.
    J.Y. Yue, Y.M. Xiao, Y.P. Li, G.Y. Han, Y. Zhang, W.J. Hou, Org. Electron. 43, 121 (2017)CrossRefGoogle Scholar
  19. 19.
    W.W. Liu, H.Y. Zhang, H.G. Wang, M. Zhang, M. Guo, Appl. Surf. Sci. 422, 304 (2017)CrossRefGoogle Scholar
  20. 20.
    J.H. Wu, J.L. Wang, J.M. Lin, L. Lan, Q.W. Tang, M.L. Huang, Y.F. Huang, L.Q. Fan, Q.B. Li, Z.Y. Tang, Adv. Energy Mater. 2, 78 (2012)CrossRefGoogle Scholar
  21. 21.
    X.H. Lu, Y.Z. Zheng, S.Q. Bi, J.X. Zhao, X. Tao, J.F. Chen, J. Power Sources 243, 588 (2013)CrossRefGoogle Scholar
  22. 22.
    S.W. Hao, Y.F. Shang, D.Y. Li, D.Y. Ågren, C.H. Yang, G.Y. Chen, Nanoscale 9, 6711 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Suo, F.F. Hu, X.Q. Zhao, Z.Y. Zhang, T. Lia, C.K. Duan, M. Yin, C.F. Guo, J. Mater. Chem. C 5, 1501 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Yu, Y.L. Yang, R.Q. Fan, H.J. Zhang, L. Li, L.G. Wei, Y. Shi, K. Pan, H.G. Fu, J. Power Sources 243, 436 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Liu, Y.L. Lu, Z.B. Xie, G.M. Chow, Sol. Energy Mater. Sol. C 95, 800 (2011)CrossRefGoogle Scholar
  26. 26.
    L.L. Liang, Y.M. Liu, X.Z. Zhao, Chem. Commun. 49, 3958 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.W. Wang, Y.H. Zhu, X.L. Yang, J.H. Shen, X.Q. Li, S.H. Qian, C.Z. Li, Electrochim. Acta. 211, 92 (2016)CrossRefGoogle Scholar
  28. 28.
    Z.Y. Zuo, D. Liu, J. Liu, H. Liu, S.B. Qin, F.F. Zheng, Mater. Chem. Phys. 123, 502 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Suo, F.F. Hu, X.Q. Zhao, Z.Y. Zhang, T. Li, C.K. Duan, M. Yin, C.F. Guo, J. Mater. Chem. C 5, 1501 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Park, J.W. Lee, S.J. Ha, J.H. Moon, Nanoscale 6, 3105 (2014)CrossRefGoogle Scholar
  31. 31.
    H.Y. Guo, Z. Hu, L. Zhao, Y.D. Wu, S.M. Wang, B.H. Dong, L. Wan, J. Li, Org. Electron. 55, 97 (2018)CrossRefGoogle Scholar
  32. 32.
    Z.Q. Li, Y.P. Que, L.E. Mo, W.C. Chen, Y. Ding, Y.M. Ma, L. Jiang, L.H. Hu, S.Y. Dai, Acs Appl. Mater. Int. 7, 10928 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Li, L. Zhao, S.M. Wang, J.H. Hu, B.H. Dong, H.B. Lu, L.W.P. Wang, Mater. Res. Bull. 48, 2566 (2013)CrossRefGoogle Scholar
  34. 34.
    C. Zhang, Y.M. Zhou, Y.W. Zhang, S. Zhao, J.S. Fang, X.L. Sheng, T. Zhang, H.X. Zhang, Chemistry 23, 4336 (2017)CrossRefGoogle Scholar
  35. 35.
    J.B. Joo, Q. Zhang, I. Lee, M. Dahl, F. Zaera, Y.D. Yin, Adv. Funct. Mater. 22, 166 (2012)CrossRefGoogle Scholar
  36. 36.
    H.Q. Liu, L.L. Wang, S.G. Chen, Mater. Lett. 61, 3629 (2007)CrossRefGoogle Scholar
  37. 37.
    S.X. Li, J. Chen, F.Y. Zheng, Y.C. Li, F.Y. Huang, Nanoscale 5, 12150 (2013)CrossRefGoogle Scholar
  38. 38.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, J Taiwan Inst Chem E 85, 273 (2018)CrossRefGoogle Scholar
  39. 39.
    Y.M. Hunge, A.A. Yadav, B.M. Mohite, V.L. Mathe, C.H. Bhosale, J. Mater. Sci. 29, 3808 (2018)Google Scholar
  40. 40.
    K. Shin, Y. Jun, J.H. Moon, J.H. Park, ACS Appl. Mater. Int. 2, 288 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Fan, W. Zhang, T.Y. Peng, J.N. Chen, F. Yang, J. Phys. Chem. C 115, 17213 (2011)CrossRefGoogle Scholar
  42. 42.
    G.B. Shan, H. Assaaoudi, G.P. Demopoulos, ACS Appl. Mater. Int. 3, 3239 (2011)CrossRefGoogle Scholar
  43. 43.
    L. Li, Y.L. Yang, R.Q. Fan, Y.X. Jiang, L.G. Wei, Y. Shi, J. Yu, S. Chen, P. Wang, B. Yang, W.W. Cao, J. Power Sources 264, 254 (2014)CrossRefGoogle Scholar
  44. 44.
    M.K. Wang, P. Chen, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, Chemphyschem 10, 290 (2009)CrossRefGoogle Scholar
  45. 45.
    H.Y. Guo, Z. Hu, L. Zhao, L. Wan, Y.D. Wu, S.M. Wang, Rsc Adv 7, 38506 (2017)CrossRefGoogle Scholar
  46. 46.
    J.W. Gu, J. Khan, Z.S. Chai, Y.F. Yuan, X. Yu, P.Y. Liu, M.G. Wu, W.J. Mai, J. Power Sources 303, 57 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Faculty of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations