Advertisement

Large electromechanical strain and electrostrictive effect in (1 − x)(Bi0.5Na0.5TiO3–SrTiO3)–xLiNbO3 ternary lead-free piezoelectric ceramics

  • Lei Wu
  • Youbin Yang
  • Shengju Zhu
  • Bo Shen
  • Querui Hu
  • Jing Chen
  • Ying Yang
  • Yidong Xia
  • Jiang YinEmail author
  • Zhiguo Liu
Article
  • 66 Downloads

Abstract

Lead-free (1 − x)(0.8Bi0.5Na0.5TiO3–0.2SrTiO3)–xLiNbO3 (BNST–xLN, x = 0–0.08) piezoelectric ceramics were fabricated by a solid-state sintered technology. The effects of LN-doping on the structural and electrical properties of the BNST–xLN system were systematically investigated. The results of Raman spectroscopy revealed that the substitution of LN softens the phonon vibrations in the BNST–xLN system, in accordance with the remarkable reduction in the phase transition temperature (TF−R), remnant polarization (Pr), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the long-range ferroelectric orders was accompanied by a significant increase in the electric field–induced strain response. At x = 0.04, a maximum unipolar strain of ~ 0.36% with a corresponding normalized strain (Smax/Emax) of ~ 600 pm/V was obtained at room temperature, which should be mainly ascribed to the reversibly electric field-induced phase transition between the ergodic relaxor and ferroelectric phases due to their comparable free energies in the two-phase coexistence region. Moreover, it was also found that the BNST–xLN system processes predominant electrostrictive behaviors with relatively high electrostrictive coefficient (Q33) and excellent temperature stability when the field-induced phase transition cannot be trigged by the applied electric field, as evidenced by a fact that the Q33 value of BNST–0.08LN ceramic keeps almost constant as high as ~ 0.028 m4/C2 in the temperature range from room temperature to 120 °C.

Notes

Acknowledgements

This work was financially supported by a grant from the State Key Program for Basic Research of China (2012CB619406), the National Natural Science Foundation of China (11174135, 51372111, and 11134004), and the Fundamental Research Funds for the Central Universities (1095021336 and 1092021307).

References

  1. 1.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  2. 2.
    D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, Funct. Mater. Lett. 3, 5 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRefGoogle Scholar
  5. 5.
    S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91, 112906 (2007)CrossRefGoogle Scholar
  6. 6.
    S.-T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.J. Ehrenberg, J. Rödel, J. Appl. Phys. 103, 034107 (2008)CrossRefGoogle Scholar
  7. 7.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71 (2012)CrossRefGoogle Scholar
  8. 8.
    W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, J. Appl. Phys. 105, 094102 (2009)CrossRefGoogle Scholar
  9. 9.
    R. Dittmer, D. Gobeljic, W. Jo, V.V. Shvartsman, D.C. Lupascu, J.L. Jones, J. Rödel, J. Appl. Phys. 115, 084111 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Hinterstein, M. Knapp, M. Hoelzel, W. Jo, A. Cervellino, H. Ehrenberg, H. Fuess, J. Appl. Crystallogr. 43, 1314 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Kling, X. Tan, W. Jo, H.J. Kleebe, H. Fuess, J. Rödel, J. Am. Ceram. Soc. 93, 2452 (2010)CrossRefGoogle Scholar
  12. 12.
    J.E. Daniels, W. Jo, J. Rödel, V. Honkimäki, J.L. Jones, Acta Mater. 58, 2103–2111, (2010)CrossRefGoogle Scholar
  13. 13.
    X.M. Liu, X.L. Tan, Adv. Mater. 28, 574 (2016)CrossRefGoogle Scholar
  14. 14.
    C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, W. Jo, J. Materiomics 2, 1 (2016)CrossRefGoogle Scholar
  15. 15.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  16. 16.
    F. Li, L. Jin, Z. Xu, S. Zhang, Appl. Phys. Rev. 1, 011103 (2014)CrossRefGoogle Scholar
  17. 17.
    S.-T. Zhang, A.B. Kounga, J. Wook, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, Adv. Mater. 21, 4716 (2009)CrossRefGoogle Scholar
  18. 18.
    S.-T. Zhang, F. Yan, B. Yang, W. Cao, Appl. Phys. Lett. 97, 122901 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Shi, H. Fan, X. Liu, A.J. Bell, J. Am. Ceram. Soc. 97, 848 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Wang, C. Jin, Q. Yao, W. Shi, J. Appl. Phys. 114, 027004 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Li, F. Wang, X. Qin, M. Xu, W. Shi, Appl. Phys. A. 104, 117 (2011)CrossRefGoogle Scholar
  22. 22.
    H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I.-W. Kim, K.-K. Ahn, J.-S. Lee, J. Appl. Phys. 113, 154102 (2013)CrossRefGoogle Scholar
  23. 23.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)CrossRefGoogle Scholar
  24. 24.
    O. Elkechai, M. Manier, J.P. Mercurio, Phys. Status Solidi A 157, 499 (1996)CrossRefGoogle Scholar
  25. 25.
    Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104, 124106 (2008)CrossRefGoogle Scholar
  26. 26.
    W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, K. Reichmann, J. Eur. Ceram. Soc. 30, 1827 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Acosta, W. Jo, J. Rödel, J. Am. Ceram. Soc. 97, 1937 (2014)CrossRefGoogle Scholar
  28. 28.
    W. Bai, L. Li, W. Li, B. Shen, J. Zhai, H. Chen, J. Am. Ceram. Soc. 97, 3510 (2014)CrossRefGoogle Scholar
  29. 29.
    X.Y. Tong, H.L. Li, J.J. Zhou, H. Liu, J.Z. Fang, Ceram. Int. 42, 16153 (2016)CrossRefGoogle Scholar
  30. 30.
    J.-H. Cho, J.-S. Park, S.-W. Kim, Y.-H. Jeong, J.-S. Yun, W.-I. Park, Y.-W. Hong, J.-H. Paik, J. Eur. Ceram. Soc. 37, 3313 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Bai, L. Li, W. Wang, B. Shen, J. Zhai, Solid State Commun. 206, 22 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, J. Eur. Ceram. Soc. 37, 2365 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, J. Appl. Phys. 114, 044103 (2013)CrossRefGoogle Scholar
  34. 34.
    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.W. Ahn, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, J. Am. Ceram. Soc. 98, 3842 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Wu, B. Shen, Q. Hu, J. Chen, Y. Wang, Y. Xia, J. Yin, Z. Liu, J. Am. Ceram. Soc. 100, 4670 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Zaman, A. Hussain, R.A. Malik, A. Maqbool, S. Nahm, M.H. Kim, J. Phys. D 49, 175301 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Xu, Z. Zhong, Y. Bing, Z.G. Ye, G. Shirane, Nat. Mater. 5, 134 (2006)CrossRefGoogle Scholar
  38. 38.
    J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, G. Lucazeau, J. Phys.: Condens. Matter 12, 3267 (2000)Google Scholar
  39. 39.
    G. Viola, H. Ning, X. Wei, M. Deluca, A. Adomkevicius, J. Khaliq, M.J. Reece, H. Yan, J. Appl. Phys. 114, 014107 (2013)CrossRefGoogle Scholar
  40. 40.
    D. Rout, K.S. Moon, S.J.L. Kang, I.W. Kim, J. Appl. Phys. 108, 084102 (2010)CrossRefGoogle Scholar
  41. 41.
    D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Adv. Funct. Mater. 22, 2285 (2012)CrossRefGoogle Scholar
  42. 42.
    F. Li, G. Chen, X. Liu, J. Zhai, B. Shen, H. Zeng, S. Li, P. Li, K. Yang, H. Yan, J. Eur. Ceram. Soc. 37, 4732 (2017)CrossRefGoogle Scholar
  43. 43.
    W. Jo, S.S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  44. 44.
    X. Liu, J. Zhai, B. Shen, F. Li, Y. Zhang, P. Li, B. Liu, Curr. Appl. Phys. 17, 774 (2017)CrossRefGoogle Scholar
  45. 45.
    F. Li, R. Zuo, D. Zheng, L. Li, J. Am. Ceram. Soc. 98, 811 (2015)CrossRefGoogle Scholar
  46. 46.
    E. Sapper, N. Novak, W. Jo, T. Granzow, J. Rödel, J. Appl. Phys. 115, 81 (2014)CrossRefGoogle Scholar
  47. 47.
    F. Li, L. Jin, Z. Xu, D. Wang, S. Zhang, Appl. Phys. Lett. 102, 152910 (2013)CrossRefGoogle Scholar
  48. 48.
    W. Bai, D. Chen, P. Zheng, J. Zhang, B. Shen, J. Zhai, Z. Ji, Ceram. Inter. 43, 3339 (2017)CrossRefGoogle Scholar
  49. 49.
    R.A. Malik, A. Hussain, M. Acostad, J. Danielse, H.-S. Han, M.-H. Kim, J.-S. Lee, J. Eur. Ceram. Soc. 38, 2511 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lei Wu
    • 1
  • Youbin Yang
    • 1
  • Shengju Zhu
    • 1
  • Bo Shen
    • 1
  • Querui Hu
    • 2
  • Jing Chen
    • 2
  • Ying Yang
    • 2
  • Yidong Xia
    • 1
  • Jiang Yin
    • 1
    Email author
  • Zhiguo Liu
    • 1
  1. 1.National Laboratory of Solid State Microstructures, College of Engineering and Applied SciencesNanjing UniversityNanjingChina
  2. 2.Department of State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations