Urchin-like NiCo2S4 infused sulfur as cathode for lithium–sulfur battery

  • Lingshan Wu
  • Shuihua TangEmail author
  • Renjie Qu


A shuttle effect caused by soluble intermediates is one of the most crucial issues in lithium sulfur batteries, which results in a short cycle life and low coulombic efficiency. Recently, binary metal sulfides as electrode materials have been used for miscellaneous application accounting for their larger redox reaction sites and higher electrical conductivity. Herein, a novel urchin-like NiCo2S4 was synthesized via two steps of hydrothermal process and then firstly used as a conductive and polar host for sulfur in lithium sulfur batteries. The obtained NiCo2S4/S composite demonstrates a capacity of 1028 mAh g−1 for the first discharge and maintains 421 mAh g−1 after 100 cycles at 0.1 C. Furthermore, the composite still shows a remarkable cycling stability at a higher rate, a low capacity fade rate of 0.18% per cycle can be achieved and a reversible capacity of 329 mAh g−1 can be obtained after 300 cycles at 1 C. This excellent performance results from a weakened polysulfide shuttle caused by a strong affinity between NiCo2S4 and polysulfides.



This work was supported by the Open Project of Fuel Cells & Hybrid Electric Power Key Lab, Chinese Academy of Sciences (KLFC201702), the Open Project from State Key Lab of Catalysis (N-14-1), and the Innovative Research Team of Southwest Petroleum University (2015CXTD04).


  1. 1.
    J.B. Goodenough, Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, R. Chen, T. Chen et al., Emerging non-lithium ion batteries. Energy Storage Mater. 4, 103–129 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Fei, X. Li, Y. Wang et al., Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium–sulfur batteries. Adv. Mater. 27, 5936–5942 (2015)CrossRefGoogle Scholar
  4. 4.
    J.W. Choi, D. Aurbach et al., Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Tang, Y. Zhang, X. Chen et al., Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015)CrossRefGoogle Scholar
  6. 6.
    P.G. Bruce, S.A. Freunberger, J.M. Tarascon et al., Li-O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013)CrossRefGoogle Scholar
  8. 8.
    Q. Pang, X. Liang, L.F. Nazar et al., Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Manthiram, S.H. Chung, C. Zu, Lithium–sulfur batteries, progress and prospects. Adv. mater. 27, 1980–2006 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Liu, J.Q. Huang, Q. Zhang et al., Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017)CrossRefGoogle Scholar
  11. 11.
    Z. Yuan, H.J. Peng, J.Q. Huang,et al., Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24, 6105–6112 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Zhang, N.W. Li, Q. Zhang et al., Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 4, 1600445 (2017)CrossRefGoogle Scholar
  13. 13.
    R. Cao, W. Xu, J.G. Zhang et al., Anodes for rechargeable lithium–sulfur batteries. Adv. Energy Mater. 5, 1402273 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 5, 1500408 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Kang, N. Deng, B. Cheng et al., A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale 8, 16541–16588 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Manthiram, Y. Fu, Y.S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Manthiram, Y. Fu, Y.S. Su et al., Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.C. Jeong, J.H. Kim, S.J. Yang et al., Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 28, 1707411 (2018)CrossRefGoogle Scholar
  19. 19.
    L. Wang, Y. Ye, R. Chen et al., Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1800919 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Song, M.L. Gordin, D. Wang et al., Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Schuster, G. He, L.F. Nazar et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Yan, Y. Wei, Y. Xu et al., Activated porous carbon materials with ultrahigh specific surface area derived from banana peels for high-performance lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 29, 11325–11335 (2018)Google Scholar
  23. 23.
    S.-H. Chung, P. Han, A. Manthiram et al., Electrochemically stable rechargeable lithium–sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 5, 1500738 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Xiao, H. Wang, H. Zhao et al., N-doped carbon nanotubes as cathode material in Li–S batteries. J. Mater. Sci.: Mater. Electron. 26, 7895–7900 (2015)Google Scholar
  25. 25.
    Y. Guo, J. Xiao, A. Jiang et al., Carbon nanotube doped active carbon coated separator for enhanced electrochemical performance of lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 28, 17453–17460 (2017)Google Scholar
  26. 26.
    N. Deng, J. Ju, B. Cheng et al., CeF3-doped porous carbon nanofibers as sulfur immobilizers in cathode material for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 10, 12626–12638 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Wei, P. Yuan, G. Shao et al., Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium–sulfur batteries. Electrochim. Acta 178, 564–570 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Qiu, G. Rong, Y. Cui et al., Highly nitridated graphene-Li2S cathodes with stable modulated cycles. Adv. Energy Mater. 5, 1501369 (2015)CrossRefGoogle Scholar
  29. 29.
    X. Geng, R. Yi, L. Yang et al., Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium–sulfur batteries. J. Mater. Sci.: Mater. Electron. 29, 10071–10081 (2018)Google Scholar
  30. 30.
    C. Tang, B.Q. Li, Q. Zhang et al., CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Jiang, X.C. Liu, H. Deng et al., Metal-organic frameworks for high charge-discharge rates in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 3916–3921 (2018)CrossRefGoogle Scholar
  32. 32.
    J. Song, J. Zheng, Y. Lin et al., Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon 128, 63–69 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Cai, G. Li, K. Zhang et al., Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1704865–1704875 (2018)CrossRefGoogle Scholar
  34. 34.
    L. Ni, G. Zhao, G. Diao et al., Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 34793–34803 (2017)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, Z. Li, X.W. Lou et al., Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 10944–10948 (2018)CrossRefGoogle Scholar
  36. 36.
    J. Zhang, H. Hu, X.W. Lou et al., Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55, 3982–3986 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Li, B.Y. Guan, X.W. Lou et al., A compact nanoconfined sulfur cathode for high-performance lithium–sulfur batteries. Joule 1, 576–587 (2017)CrossRefGoogle Scholar
  38. 38.
    K. Kim, P.J. Kim, J.P. Youngblood et al., Surface functionalization of carbon architecture with nano-MnO2 for effective polysulfide confinement in lithium–sulfur batteries. ChemSusChem 11, 2375–2381 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Zhang, S. Zhang, H. Jiu et al., Porous hollow spherical Mg0.6Ni0.4O/S composite as cathode material for Li–S batteries. J. Alloys Compd. 749, 594–598 (2018)CrossRefGoogle Scholar
  40. 40.
    X. Chen, H.-J. Peng, R. Zhang et al., An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries, S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2, 795–801 (2017)CrossRefGoogle Scholar
  41. 41.
    Q. Pang, X. Liang, L.F. Nazar et al., Review-The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium–sulfur batteries. J. Electrochem. Soc. 162, A2567–A2576 (2015)CrossRefGoogle Scholar
  42. 42.
    X. Tao, J. Wang, Y. Cui et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Zhou, N. Lin, Y. Qian et al., Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium–sulfur batteries. Electrochim. Acta 218, 243–251 (2016)CrossRefGoogle Scholar
  44. 44.
    H. Xu, A. Manthiram, Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium–sulfur batteries. Nano Energy 33, 124–129 (2017)CrossRefGoogle Scholar
  45. 45.
    T. Chen, L. Ma, Z. Jin et al., Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017)CrossRefGoogle Scholar
  46. 46.
    H. Lin, L. Yang, J.Y. Lee et al., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10, 1476–1486 (2017)CrossRefGoogle Scholar
  47. 47.
    S.S. Zhang, D.T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. J. Mater. Chem. A 4, 4371–4374 (2016)CrossRefGoogle Scholar
  48. 48.
    T. Chen, Z. Zhang, Z. Jin et al., Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 139, 12710–12715 (2017)CrossRefGoogle Scholar
  49. 49.
    X. Hong, S. Li, F. Li et al., Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium–sulfur batteries. J. Alloys Compd. 749, 586–593 (2018)CrossRefGoogle Scholar
  50. 50.
    W. Tong, Y. Huang, J. Zong et al., Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium–sulfur batteries. J. Alloys Compd. 731, 964–970 (2018)CrossRefGoogle Scholar
  51. 51.
    Z. Li, X. Li, W. Li et al., Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium–sulfur battery with improved cyclic stability. J. Power Sources 334, 23–30 (2016)CrossRefGoogle Scholar
  52. 52.
    S.T. Seyyedin, M.R. Yaftian, M.R. Sovizi, Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries. J. Solid State Electrochem. 21, 649–656 (2017)CrossRefGoogle Scholar
  53. 53.
    Y. Liu, G. Feng, B. Zhong et al., Employing MnO as multifunctional polysulfide reservoirs for enhanced-performance Li–S batteries. J. Alloys Compd. 748, 100–110 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of Oil and Gas Reservoir Geology & ExploitationSouthwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations