Microstructures and energy storage property of sandwiched BZT-BCT@Fe3O4/polyimide composites

  • Qingguo ChiEmail author
  • Zhiyou Gao
  • Changhai Zhang
  • Tiandong Zhang
  • Yang Cui
  • Xuan Wang
  • Qingquan Lei


In this paper, the sandwich structured polyimide composite films were studied, in which two layers of pure polyimide films were covered on both sides of BZT-BCT@Fe3O4/PI composite films. The result indicated that composite films with doped BZT-BCT@Fe3O4 had a significant performance in dielectric properties. The phases and microstructures of BZT-BCT@Fe3O4 and sandwiched composite films were studied by means of XRD, TEM and SEM. It was found that Fe3O4 was present and randomly coated on BZT-BCT. The measured dielectric properties of the composite films show great increased dielectric constant. The dielectric strength of the composite films decreases with the volume fraction raising, however, the relatively high values can be obtained when the fillers content is lower than 5 vol.%. The energy storage density increases significantly at small volume fractions, but decreases significantly at 7 vol.% due to reduced dielectric strength. On the whole, the composite films exhibit higher energy storage density and excellent discharge efficiency when the volume fraction is less than 7%, and the discharge efficiency is still higher than 85% at 265 kV/mm.



The authors gratefully acknowledge the support of the National Science Foundation of China (61640019), the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (KFJJ201601), Science Funds for the Young Innovative Talents of HUST (201102).


  1. 1.
    J. Fu, Y.D. Hou, M.P. Zheng, Q.Y. Wei, M.K. Zhu, H. Yan, ACS Appl. Mater. Interfaces 7, 24480 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Iroh, P. Okafor, J. Mater. Chem. A 3, 17230 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Guo, K. Cai, Y. Wang, J. Mater. Chem. C 5, 2531 (2017)CrossRefGoogle Scholar
  4. 4.
    W.Y. Zhou, Y. Gong, L.T. Tu, L. Xu, W. Zhao, J.T. Cai, Y.T. Zhang, A.N. Zhou, J. Alloys Compd. 693, 1 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Yang, H.L. Sun, D. Yin, Z.H. Lu, J.H. Wei, R. Xiong, J. Shi, Z.Y. Wang, Z.Y. Liu, Q.Q. Lei, J. Mater. Chem. A 3, 4916 (2015)CrossRefGoogle Scholar
  6. 6.
    S.T. Li, W.W. Wang, S.H. Yu, H.G. Sun, IEEE Trans. Dielectr. Electr. Insul. 21, 519 (2014)CrossRefGoogle Scholar
  7. 7.
    Y.J. Kou, W.Y. Zhou, B. Li, L.N. Dong, Y.E. Duan, Q.W. Hou, X.R. Liu, H.W. Cai, Q.G. Chen, Z.M. Dang, Compos. A 114, 97 (2018)CrossRefGoogle Scholar
  8. 8.
    W.D. Sun, X.J. Lu, J.Y. Jiang, X. Zhang, P.H. Hu, M. Li, Y.H. Lin, C.W. Nan, Y. Shen, J. Appl. Phys. 121, 244101 (2017)CrossRefGoogle Scholar
  9. 9.
    T.V.K. Prateek, R.K. Gupta, Chem. Rev. 116, 4260 (2016)CrossRefGoogle Scholar
  10. 10.
    Q.G. Chi, J. Sun, C.H. Zhang, G. Liu, J.Q. Lin, Y.N. Wang, X. Wang, Q.Q. Lei, J. Mater. Chem. C 2, 172 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Gupta, A. Kumar, M. Tomar, V. Gupta, D.P. Singh, J Mater. Sci.: Mater. Electron. 28, 11806 (2017)Google Scholar
  12. 12.
    H.W. Lu, L.Z. Liu, J.Q. Lin, W.L. Yang, L. Weng, X.R. Zhang, G.R. Chen, W. Huang, J. Appl. Polym. Sci. 134, 45362 (2017)CrossRefGoogle Scholar
  13. 13.
    C.W. Beier, J.M. Sanders, R.L. Brutchey, J. Phys. Chem. C 117, 6958 (2013)CrossRefGoogle Scholar
  14. 14.
    G.R. Chen, W.L. Yang, J.Q. Lin, X. Wang, D.P. Li, Y. Wang, M.F. Liang, W.M. Ding, H.D. Li, Q.Q. Lei, J. Mater. Chem. C 5, 8135 (2017)CrossRefGoogle Scholar
  15. 15.
    Q.Q. Chi, T. Ma, J.F. Dong, Y. Cui, Y. Zhang, C.H. Zhang, S.C. Xu, X. Wang, Q.Q. Lei, Sci. Rep. 7, 3072 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Wang, Z.C. Shi, F. Mao, X. Wang, K. Zhang, J. Shi, RSC Adv. 6, 43429 (2016)CrossRefGoogle Scholar
  17. 17.
    G.Y. Wang, X.Y. Huang, P.K. Jiang, ACS Appl. Mater. Interfaces 7, 18017 (2015)CrossRefGoogle Scholar
  18. 18.
    S.H. Liu, J.W. Zhai, J.W. Wang, S.X. Xue, W.Q. Zhang, ACS Appl. Mater. Interfaces 6, 1533 (2014)CrossRefGoogle Scholar
  19. 19.
    Q.G. Chi, T. Ma, Y. Zhang, Y. Cui, C.H. Zhang, J.Q. Lin, X. Wang, Q.Q. Lei, J. Mater. Chem. A 5, 16757 (2017)CrossRefGoogle Scholar
  20. 20.
    Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, Y.Y. Bai, H. Wang, Adv. Mater. 27, 6658 (2015)CrossRefGoogle Scholar
  21. 21.
    P.H. Hu, Y. Shen, Y.H. Guan, X.H. Zhang, Y.H. Lin, Q.M. Zhang, C.W. Nan, Adv. Funct. Mater. 24, 3172 (2014)CrossRefGoogle Scholar
  22. 22.
    P.H. Hu, J.J. Wang, Y. Shen, Y.H. Guan, Y.H. Lin, C.W. Nan, J. Mater. Chem. A 1, 12321 (2013)CrossRefGoogle Scholar
  23. 23.
    K. Yano, A. Usuki, A. Okada, J. Polym. Sci. Polym. Chem. 35, 2289 (1997)CrossRefGoogle Scholar
  24. 24.
    C. Wang, Q.H. Wang, T.M. Wang, Langmuir 26, 18357 (2010)CrossRefGoogle Scholar
  25. 25.
    C.W. Nan, Y. Shen, J. Ma, Annu. Rev. Mater. Res. 40, 131 (2010)CrossRefGoogle Scholar
  26. 26.
    W.Y. Zhou, L. Xu, L.Y. Jiang, J.D. Peng, Y. Gong, X.R. Liu, H.W. Cai, G.H. Wang, Q.G. Chen, J. Alloys Compd. 710, 47 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Wang, W.L. Li, Y. Feng, Y.F. Hou, T.D. Zhang, W.D. Fei, J.H. Yin, Ceram. Int. 41, 13582 (2015)CrossRefGoogle Scholar
  28. 28.
    H.Y. Wang, Q. Fu, J.Q. Luo, D.M. Zhao, L.H. Luo, W.P. Li, Appl. Phys. Lett. 110, 242902 (2017)CrossRefGoogle Scholar
  29. 29.
    Q.G. Chi, T. Ma, Y. Zhang, Q.G. Chen, C.H. Zhang, Y. Cui, T.D. Zhang, J.Q. Lin, X. Wang, Q.Q. Lei, ACS Sustain. Chem. Eng. 6, 403 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Gong, W.Y. Zhou, Z.J. Wang, L. Xu, Y.J. Kou, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, J. Mater. Sci. Technol. 34, 2415 (2018)CrossRefGoogle Scholar
  31. 31.
    G.R. Chen, X. Wang, J.Q. Lin, W.L. Yang, H.D. Li, Y.N. Wen, L.D. Li, Z.T. Jiang, Q.Q. Lei, J. Phys. Chem. C 4, 8070 (2016)Google Scholar
  32. 32.
    B.C. Luo, X.H. Wang, Y.P. Wang, L.T. Li, J. Mater. Chem. A 2, 510 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Zhou, J.W. Zha, R.Y. Cui, B.H. Fan, J.K. Yuan, Z.M. Dang, ACS Appl. Mater. Interfaces 3, 2184 (2011)CrossRefGoogle Scholar
  34. 34.
    Q.G. Chi, X.B. Wang, C.H. Zhang, Q.G. Chen, M.H. Chen, T.D. Zhang, L. Gao, Y. Zhang, Y. Cui, X. Wang, Q.Q. Lei, ACS Sustain. Chem. Eng. 6, 8641 (2018)CrossRefGoogle Scholar
  35. 35.
    Y. Wang, Y. Hou, Y. Deng, Compos. Sci. Technol. 145, 71 (2017)CrossRefGoogle Scholar
  36. 36.
    L. Yao, D.R. Wang, P.H. Hu, B.Z. Han, Z.M. Dang, Adv. Mater. Interfaces 3, 1600016 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qingguo Chi
    • 1
    • 2
    • 3
    Email author
  • Zhiyou Gao
    • 1
    • 2
  • Changhai Zhang
    • 1
  • Tiandong Zhang
    • 1
    • 2
  • Yang Cui
    • 1
    • 2
  • Xuan Wang
    • 1
    • 2
  • Qingquan Lei
    • 1
  1. 1.Key Laboratory of Engineering Dielectrics and Its Application, Ministry of EducationHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.School of Electrical and Electronic EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  3. 3.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations