Advertisement

A novel strategy to produce compact and adherent thin films of SnO2/TiO2 composites suitable for water splitting and pollutant degradation

  • F. Joudi
  • J. Ben NaceurEmail author
  • R. Ouertani
  • R. Chtourou
Article
  • 33 Downloads

Abstract

SnO2/TiO2 composites have been widely studied as efficient photoanodes by various research groups around the globe. However, in this work, we display a novel and low cost strategy to synthesize thin films of such composites. According to the synthesizing strategy, various amounts of Degussa TiO2 P25 nanopowder ranging from 0.25 to 1.0 g were mixed to a fixed volume of SnO2 sol–gel solution. Then, the mixtures were spin-coated on doped tin oxide glass substrates. After a slow annealing at 500 °C, we obtained nanostructured SnO2/TiO2 composite thin films (CTFs). As-prepared CTFs were characterized by the scotch tape test, scanning electron microscope, X-ray diffraction and photoluminescence spectra. Furthermore, photoelectrochemical properties, photocatalytic activities and stability of all SnO2/TiO2 composite based PAs were studied. Results showed that composites with medium TiO2 amount exhibits more compact and adherent films than bare TiO2 films. We recorded an optimum situation for films prepared with 0.75 g of TiO2. It was proved that the SnO2 sol–gel method enabled compactness and adhesion of the processed composites. We correlated the photoluminescence intensity to the photocurrent density Jsc. The optimum Jsc, almost equal to 0.9 mA, was obtained in the case of 0.75 g amount of TiO2. This electrical performance is nearly nine times higher than that recorded with bare TiO2 photo-anodes. Moreover, replacing bare TiO2 photocatalyst by SnO2/TiO2 CTFs brought remarkable improvements to the photocatalytic degradation of methyl orange. Finally both morphological and mechanical properties of the composites were correlated to the stability and reusability of the CTF PAs.

Abbreviations

MO

Metal oxide

PEC

Photoelectrochemical

PA

Photoanode

ITO

Indium-doped tin oxide

CTHs

Compact thin films

XRD

X ray-diffraction

SEM

Scanning electron microscope

PL

Photoluminescence

LSV

Linear sweep voltammogram

Jsc

Short-circuit current density

J–V

Photocurrent density–voltage

VOC

Open circuit voltage

FF

Fill factor

η

Energy conversion efficiency

J–t

Photocurrent–time

References

  1. 1.
    A. Eftekhari, V.J. Babu, S. Ramakrishna, Photoelectrode nanomaterials for photoelectrochemical water splitting. Int. J. Hydrog. Energy 42, 11078–11109 (2017)CrossRefGoogle Scholar
  2. 2.
    E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)CrossRefGoogle Scholar
  3. 3.
    P. Debashis, Y.T. Tseung, One-dimensional ZnO nanostructures: fabrication, optoelectronic properties and device applications. J. Mater. Sci. 48, 6849–6877 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Dixit, A. Bilgaiyan, I.A. Palani, D. Nakamura, T. Okada, V. Singh, Influence of potassium permanganate on the anisotropic growth and enhanced UV emission of ZnO nanostructures using hydrothermal process for optoelectronic applications. J. Sol-Gel Sci. Technol. 75, 693 (2015)CrossRefGoogle Scholar
  5. 5.
    T. Dixit, I.A. Palani, V. Singh, Role of surface plasmon decay mediated hot carriers towards the photoluminescence tuning of metal coated ZnO nanorods. J. Phys. Chem. C 121, 3540 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 20, 2791–2808 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Vogel, P. Hoyer, H. Weller, Quantum-sized, PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 983, 183–3188 (1994)Google Scholar
  8. 8.
    S.U.M. Khan, Stability and photoresponse of nanocrystalline n-TiO[sub 2] and n-TiO[sub 2]∕Mn[sub 2]O[sub 3] thin film electrodes during water splitting reactions. J. Electrochem. Soc. 145, 89–93 (1998)CrossRefGoogle Scholar
  9. 9.
    J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting—review. Int. J. Hydrog. Energy 43, 4804–4817 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Zong, C. Li, Photocatalytic water splitting on metal oxide-based semiconductor photocatalysts. Met. Oxides Heterogen. Catal. 2018, 355–399 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Malwal, P. Gopinath, Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation. Catal. Sci. Technol. 6, 4458–4472 (2016)CrossRefGoogle Scholar
  12. 12.
    X. Ding, L. Zhang, Y. Wang, A. Liu, Y. Gao, Design of photoanode-based dye-sensitized photoelectrochemical cells assembling with transition metal complexes for visible light-induced water splitting. Coord. Chem. Rev. 357, 130–143 (2018)CrossRefGoogle Scholar
  13. 13.
    J.-J. Lee, M. Mahbubur, S. Sarker, N.C. Deb, A.J. Saleh, J. Kwan, Metal oxides and their composites for the photoelectrode of dye sensitized solar cells. In Advances in Composite Materials for Medicine and Nanotechnology, (Intech, Rijeka, 2011), pp 182–210Google Scholar
  14. 14.
    Y. Chen, L. Hong, H.M. Xue, W.Q. Han, L.J. Wang, X.Y. Sun, J.S. Li, Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition. J. Electroanal. Chem. 648, 119–127 (2010)CrossRefGoogle Scholar
  15. 15.
    C.W. Cheng, H.F. Zhang, W.N. Ren, W.J. Dong, Y. Sun, Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2, 779–786 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation environmental. Sci. Technol. 43, 858–863 (2008)CrossRefGoogle Scholar
  17. 17.
    R. Wang, J. Bai, Y. Li, Q. Zeng, J. Li, B. Zhou, BiVO4/TiO2(N2) nanotubes heterojunctionphotoanode for highly efficient photoelectrocatalytic applications. Nano-Micro Lett. 9, 14 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Tu, J. Wu, M. Zheng, J. Huo, P. Zhou, Z. Lan, J. Lin, M. Huang, TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%. Nanoscale 7, 20539–20546 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Zhai, H. Lee, Y.-T. Huang, T.-C. Wei, S.-P. Feng, Study on the blocking effect of a quantum-dot TiO2 compact layer in dye-sensitized solar cells with ionic liquid electrolyte under low intensity illumination. J. Power Sources 329, 502–509 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Li, H. Sun, X. Liu, H. Sui, P. Liu, An efficient TiO2 electron transport layer for compact TiO2/polycrystalline BiFeO3 heterostructure thin film with enhanced photovoltaic performance. Mater. Lett. 219, 4–7 (2018)CrossRefGoogle Scholar
  21. 21.
    L. Lopez, W. Daoud, D. Dutta, B. Panther, T. Turney, Effect of substrate on surface morpholy and photocatalysis of large—scale TiO2 films. Appl. Surf. Sci. 265, 162–168 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Realpe, D. Núñez, I. Carbal, M.T. Acevedo, G. De Avila, Preparation and characterization of titanium dioxide photoelectrodes for generation of hydrogen by photoelectrochemical water splitting. Int. J. Eng. Technol. 7, 753–759 (2015)Google Scholar
  23. 23.
    A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl. Catal. 389, 1–8 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000)CrossRefGoogle Scholar
  25. 25.
    C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 nanostructures TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg. Chem. 48, 7261–7268 (2009)CrossRefGoogle Scholar
  26. 26.
    X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen et al., High performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure. Small 9, 2005–2011 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Huang, J. Yu, B. Li, C. Deng, L. Wang, W. Wu, L. Dong, F. Zhang, Minguang Fan, Intergrowth and coexistence effects of TiO2–SnO2nanocomposite with excellent photocatalytic activity. J. Alloy. Compd. 629, 55–61 (2015)CrossRefGoogle Scholar
  28. 28.
    L.R. Hou, C.Z. Yuan, Y. Peng, Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater. 139, 310–315 (2007)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, 651–656 (2017)CrossRefGoogle Scholar
  30. 30.
    K. Wee, B.D. Sherman, K. Brennaman, M.V. Sheridan, A. Nayak, L. Alibabaei, T.J. Meyer, An aqueous, organic dye derivatized SnO2/TiO2 core/shell photoanode. J. Mater. Chem. A. 4, 2969–2975 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Ramier, N. Da Costa, C.J.G. Plummer, Y. Leterrier, J.A.E. Månson, R. Eckert, R. Gaudiana, Cohesion and adhesion of nanoporous TiO2 coatings on titanium wires for photovoltaic applications. Thin Solid Films 516, 1913–1919 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt Res. Appl. 8, 171 (2000)CrossRefGoogle Scholar
  33. 33.
    D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnaue, Recombination pathways in the degussa P25 formulation of TiO2: surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005)CrossRefGoogle Scholar
  34. 34.
    S. Ngamsinlapasathiana, T. Sreethawongb, Y. Suzukia, S. Yoshikawa, Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells. Sol. Energy Mater. Solar Cells 90, 2129–2140 (2006)CrossRefGoogle Scholar
  35. 35.
    L.F. Da Silva, O.F. Lopes, A.C. Catto, W. Avansi Jr., M.I.B. Bernardi, M.S. Li, C. Ribeirob, E. Longo, Hierarchical growth of ZnO nanorods over SnO2 seed layer: insights into electronic properties from photocatalytic activity. RSC Adv. 6, 2112 (2016)CrossRefGoogle Scholar
  36. 36.
    J.B. Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by sol–gel technique. Curr. Appl. Phys. 12, 422–428 (2012)CrossRefGoogle Scholar
  37. 37.
    Y. Liang, S. Sun, T. Deng, H. Ding, W. Chen, Y. Chen, The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials 11, 450 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Wang et al., Hierarchical SnO2 nanospheres: bio-inspired mineralization,vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Fukuda, M. Ichimura, Heterostructure solar cells based on sol-gel deposited SnO2 and electrochemically deposited Cu2O. Mater. Sci. Appl. 4, 1 (2013)Google Scholar
  40. 40.
    L. Lv, X. Bai, Z. Ye, Construction of N-doped TiO2/SnO2heterostructured microspheres with dominant {001} facets for enhanced photocatalytic properties. CrystEngComm 18, 7580 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Chen, D.D. Dionysiou, Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method. J. Mol. Catal. A 244, 73–82 (2006)CrossRefGoogle Scholar
  42. 42.
    J.S. Ogorevc, U.L. Stangar, P. Bukovec, Enhancement of photocatalytic activity of sol-gel TiO2 thin films with P25. Acta Chim. Slov. 55, 889–896 (2008)Google Scholar
  43. 43.
    F. Joudi, W. Chakhari, R. Ouertani, J. Ben Naceur, R. Chtourou, Enhancement of photoelectrochemical performance of CdSe sensitized seeded TiO2 films. J. Mater. Sci. 29, 16259–16269 (2018)Google Scholar
  44. 44.
    I.M.A. Mohamed et al., Synthesis of novel SnO2@TiO2 nanofibers as an efficient photoanode of dyesensitized solar cells. Int. J. Hydrog. Energy 41, 10578–10589 (2016)CrossRefGoogle Scholar
  45. 45.
    J. Kaur, R. Singh, B. Pal, Influence of coinage and platinum group metal co-catalysis for the photocatalytic reduction of m-dinitrobenzene by P25 and rutile TiO2. J. Mol. Catal. A 397, 99–105 (2014)Google Scholar
  46. 46.
    S. Mathew, A.K. Prasad, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J. Fluoresc. 22, 1563 (2012)CrossRefGoogle Scholar
  47. 47.
    J. Nelson, R.E. Chandler, Random walk models of charge transfer and transport in dye sensitized systems. Coord. Chem. Rev. 248, 1181–1194 (2004)CrossRefGoogle Scholar
  48. 48.
    S. Yang, Y. Hou, J. Xing, B. Zhang, F. Tian, X.H. Yang, H.G. Yang, Ultrathin SnO2 scaffolds for TiO2-Based heterojunction photoanodes in dye-sensitized solar cells: oriented charge transport and improved light scattering. Chemistry 19, 9366–9370 (2013)CrossRefGoogle Scholar
  49. 49.
    I.A. Pronin, B.V. Donkova, D.T. Dimitrov, I.A. Averin, J.A. Pencheva, V.A. Moshnikov, Relationship between the photocatalytic and photoluminescence properties of zinc oxide doped with copper and manganese. Semiconductors 48, 842–847 (2014)CrossRefGoogle Scholar
  50. 50.
    S. Mathew, A.K. Prasad, T. Benoy, P.P. Rakesh, M. Hari, T.M. Libish, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, J. Fluoresc. 22, 1563 (2012)CrossRefGoogle Scholar
  51. 51.
    P. Chetri, P. Basyach, A. Choudhury, Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: an experimental and DFT investigation. Chem. Phys. 434, 1–10 (2014)CrossRefGoogle Scholar
  52. 52.
    S. Ito, P. Liska, P. Comte, R. Charvet, P. Pe´chy, L. Schmidt-Mend, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, M. Gra¨tzel, Control of dark current in photoelectrochemical (TiO2/I–I3 ) and dye-sensitized solar cells. Chem. Commun. 34, 4351–4353 (2005)CrossRefGoogle Scholar
  53. 53.
    B.E. Hardin, H.J. Snaith, M.D. McGehe, The renaissance of dye-sensitized solar cells, review article. Nat. Photon. 6, 162–169 (2012)CrossRefGoogle Scholar
  54. 54.
    K. Ahn, D. Pham-Cong, H.S. Choi, S.Y. Jeong, J.H. Cho, J. Kim, J.P. Kim, J.S. Bae, C.R. Cho, Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers: Synthesis, properties, and their photocatalytic mechanism. Curr. Appl. Phys. 16, 251–260 (2016)CrossRefGoogle Scholar
  55. 55.
    R. Sivakumar, J. Ramkumar, S. Shaji, M. Paulraj, Efficient TiO2 blocking layer for TiO2nanorod arrays based dye sensitized solar cells. Thin Solid Films 720, 012036 (2016)Google Scholar
  56. 56.
    B. Parkinson, On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)CrossRefGoogle Scholar
  57. 57.
    S. Huang, G. Schlichth€orl, A. Nozik, M. Gr€atzel, A. Frank, Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576–2582 (1997)CrossRefGoogle Scholar
  58. 58.
    N. Karthikeyan, V. Narayanan, A. Stephen, Degradation of textile effluent using nanocomposite TiO2/SnO2 semiconductor photocatalysts. Int. J. Chem. Technol. Res. 8, 443–449 (2015)Google Scholar
  59. 59.
    T. Fotiou, T.M. Triantis, T. Kaloudis, K.E. O’Shea, D.D. Dionysiou, A. Hiskia, Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C–TiO2. Water Res. 90, 52 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. Joudi
    • 1
    • 2
  • J. Ben Naceur
    • 1
    Email author
  • R. Ouertani
    • 3
  • R. Chtourou
    • 1
  1. 1.Laboratory of Nanomaterials and Renewable Energy Systems, Research and Technology Center of EnergyBorj-Cedria Science and Technology ParkHammam-LifTunisia
  2. 2.Faculty of Science of TunisUniversity Tunis ElmanarTunisTunisia
  3. 3.Photovoltaic Laboratory, Research and Technology Center of EnergyBorj-Cedria Science and Technology ParkHammam-LifTunisia

Personalised recommendations