Advertisement

A facile synthesis of self-assembling reduced graphene oxide/cobalt carbonate hydroxide papers for high-performance supercapacitor applications

  • Long Jiao
  • Xuexue Pan
  • Yunlong Xi
  • Junzhi Li
  • Junming Cao
  • Qing GuoEmail author
  • Wei HanEmail author
Article
  • 96 Downloads

Abstract

Electrode materials as an important component for the supercapacitors (SC) mainly undertake energy storage. Hence, the research hotspots in the SC fields are focused on the active materials of the electrode. In this study, we have provided a facile synthesis method to prepare reduced graphene oxide (RGO) and cobalt carbonate hydroxide (Co(CO3)0.5(OH)0.11·H2O) nanorod composites. The RGO films were obtained by vacuum filtration of GO papers and hydrothermal method. And during this hydrothermal, Co(CO3)0.5(OH)0.11·H2O nanorods also grow on the surface of RGO films. The as-fabricated RGO/Co(CO3)0.5(OH)0.11·H2O composites are characterized by SEM, EDS, XRD measurement. According to the electrochemical research results, the RGO/Co(CO3)0.5(OH)0.11·H2O electrodes own an ultrahigh volumetric capacitance of 1627 F cm−3 at a current density of 0.5 A g−1. Besides, the energy density of the symmetrical supercapacitor (SSc) assembled with the RGO/Co(CO3)0.5(OH)0.11·H2O electrode material is 9.22 mW h cm−3, and the capacity can be maintained 100.0% after 10,000 cycles when the composite material at the current density of 1 A g−1, these promote an efficient electrode material for electrochemical supercapacitor applications.

Notes

Acknowledgements

The authors sincerely acknowledge financial support from National Natural Science Foundation of China (NSFC Grant Nos. 21571080), the Nature Science Foundation of Jilin Province (20170101193JC).

Supplementary material

10854_2018_277_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1478 KB)

References

  1. 1.
    C. Xiang, Q. Wang, Y. Zou, P. Huang, H. Chu, S. Qiu, F. Xu, L. Sun, Simple synthesis of graphene-doped flower-like cobalt-nickel-tungsten-boron oxides with self-oxidation for high-performance supercapacitors. J. Mater. Chem. A 5, 9907–9916 (2017)CrossRefGoogle Scholar
  2. 2.
    X. Yuan, B. Chen, X. Wu, J. Mo, Z. Liu, Z. Hu, Z. Liu, C. Zhou, H. Yang, Y. Wu, An aqueous asymmetric supercapacitor based on activated carbon and tungsten trioxide nanowire electrodes. Chin. J. Chem. 35, 61–66 (2017)CrossRefGoogle Scholar
  3. 3.
    B. Wei, H. Liang, D. Zhang, Z. Wu, Z. Qi, Z. Wang, CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors. J. Mater. Chem. A 5, 2844–2851 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Zhang, X. Jin, L. Wang, M. Sun, Y. Tang, Y. Chen, Y. Sun, X. Yang, P. Wan, Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction. Appl. Surf. Sci. 411, 251–260 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Yang, Y. Yuan, W. Wang, H. Tang, Z. Ye, J. Lu, Interconnected Co0.85Se nanosheets as cathode materials for asymmetric supercapacitors. J. Power Sources 340, 6–13 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Tabassum, A. Mahmood, Q. Wang, W. Xia, Z. Liang, B. Qiu, R. Zhao, R. Zou, Hierarchical cobalt hydroxide and B/N Co-Doped graphene nanohybrids derived from metal-organic frameworks for high energy density asymmetric supercapacitors, Sci. Rep. 7, 43084 (2017)CrossRefGoogle Scholar
  7. 7.
    C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, N.M. Huang, Capacitive performance of graphene-based asymmetric supercapacitor. Electrochim. Acta 229, 173–182 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Maitra, A.K. Das, R. Bera, S.K. Karan, S. Paria, S.K. Si, B.B. Khatua, An approach to fabricate PDMS encapsulated all-solid-state advanced asymmetric supercapacitor device with vertically aligned hierarchical Zn-Fe-Co ternary oxide nanowire and nitrogen doped graphene nanosheet for high power device applications, ACS Appl. Mater. Interfaces 9, 5947–5958 (2017)CrossRefGoogle Scholar
  9. 9.
    S.J. Patil, J.H. Kim, D.W. Lee, Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor. J. Power Sources 342, 652–665 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Hu, H. Wei, Y. She, X. Tang, M. Zhou, Z. Zang, J. Du, C. Gao, Y. Guo, D. Bao, Flower-like nickel-zinc-cobalt mixed metal oxide nanowire arrays for electrochemical capacitor applications. J. Alloys Compd. 708, 146–153 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Cao, K. Wang, X. Wang, Z. Gu, Q. Fan, W. Gibbons, J.D. Hoefelmeyer, P.R. Kharel, M. Shrestha, Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim. Acta 212, 839–847 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Zheng, Z. Lin, W. Chen, B. Liang, H. Du, R. Yang, X. He, Z. Tang, X. Gui, Flexible, sandwich-like CNTs/NiCo2O4 hybrid paper electrodes for all-solid state supercapacitors. J. Mater. Chem. A 5, 5886–5894 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, L. Wei, High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets. J. Power Sources 346, 120–127 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Zhang, Y. Ding, J. Zhang, B. Fu, X. Zhang, X. Zheng, Y. Fang, Construction of MnO2 nanowires@Ni1-xCoxOy nanoflake core-shell heterostructure for high performance supercapacitor. J. Alloys Compd. 694, 1302–1308 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, X. Liu, S. Zeng, J. Fang, C. Men, X. Zhang, Q. Li, Reducing and uniforming the CO3O4 particle size by sulfonated graphenal polymers for electrochemical applications, Nanoscale Res. Lett. 12, 165 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Zheng, H. Dong, Y. Xiao, H. Hu, C. He, B. Lei, L. Sun, Y. Liu, Hierarchical NiO mesocrystals with tuneable high-energy facets for pseudocapacitive charge storage. J. Mater. Chem. A 5, 6921–6927 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, Y. Jiao, B. Yin, S. Zhang, F. Qu, X. Wu, Enhanced electrochemical performance of hybrid SnO2@MOx (M = Ni, Co, Mn) core-shell nanostructures grown on flexible carbon fibers as the supercapacitor electrode materials. J. Mater. Chem. A 3, 3676–3682 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Wang, R. Xu, R. Wang, H. Wang, D.J.L. Brett, B.G. Pollet, S. Ji, Nano-sized Co/Co(OH)(2) core-shell structure synthesized in molten salt as electrode materials for supercapacitors. Ionics 23, 725–730 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, Y. Zhao, W. An, L. Xing, Y. Gao, J. Liu, Heteroelement Y-doped alpha-Ni(OH)(2) nanosheets with excellent pseudocapacitive performance. J. Mater. Chem. A 5, 10039–10047 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Zhang, D. Huang, N. Hu, C. Yang, M. Li, H. Wei, Z. Yang, Y. Su, Y. Zhang, Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J. Power Sources 342, 1–8 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Xu, T. Xiao, X. Tan, P. Xiang, L. Jiang, D. Wu, J. Li, S. Wang, A new asymmetric aqueous supercapacitor: Co3O4//Co3O4@polypyrrole. J. Alloys Compd. 706, 351–357 (2017)CrossRefGoogle Scholar
  22. 22.
    G. Rajeshkhanna, E. Umeshbabu, G.R. Rao, In situ grown nano-architectures of Co3O4 on Ni-foam for charge storage application. J. Chem. Sci. 129, 157–166 (2017)CrossRefGoogle Scholar
  23. 23.
    N. Wang, P. Zhao, Q. Zhang, M. Yao, W. Hu, Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: a facile fabrication and excellent electrochemical performance. Compos. B 113, 144–151 (2017)CrossRefGoogle Scholar
  24. 24.
    C.R. Zheng, C.B. Cao, R.L. Chang, J.H. Hou, H.Z. Zhai, Hierarchical mesoporous NiCo2O4 hollow nanocubes for supercapacitors. Phys. Chem. Chem. Phys. 18, 6268–6274 (2016)CrossRefGoogle Scholar
  25. 25.
    Q. Yang, S.-Y. Lin, Rationally designed nanosheet-based CoMoO4-NiMoO4 nanotubes for high-performance electrochemical electrodes. Rsc Adv. 6, 10520–10526 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Xu, Z. Liu, D. Chen, Y. Song, R. Wang, Synthesis and electrochemical properties of porous alpha-Co(OH)2 and Co3O4 microspheres. Prog. Nat. Sci. 27, 197–202 (2017)CrossRefGoogle Scholar
  27. 27.
    E.M. Jin, H.J. Lee, H.-B. Jun, S.M. Jeong, Electrochemical properties of alpha-Co(OH)(2)/graphene nano-flake thin film for use as a hybrid supercapacitor. Korean J. Chem. Eng. 34, 885–891 (2017)CrossRefGoogle Scholar
  28. 28.
    R. Zhou, C. Han, X. Wang, Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J. Power Sources 352, 99–110 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Zhao, X. Ji, P. Bi, W. Jin, C. Xiong, A. Dang, H. Li, T. Li, S. Shang, Z. Zhou, In situ synthesis of interlinked three-dimensional graphene foam/ polyaniline nanorod supercapacitor. Electrochim. Acta 230, 342–349 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Ni, W. Zhang, Z. Wu, C. Sun, Y. Cai, G. Yang, M. Chen, Y. Piao, G. Diao, Supramolecular assembled three-dimensional graphene hybrids: synthesis and applications in supercapacitors. Appl. Surf. Sci. 396, 412–420 (2017)CrossRefGoogle Scholar
  31. 31.
    N. Zhang, N. Gao, C. Fu, D. Liu, S. Li, L. Jiang, H. Zhou, Y. Kuang, Hierarchical porous carbon spheres/graphene composite for supercapacitor with both aqueous solution and ionic liquid. Electrochim. Acta 235, 340–347 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Ranganatha, S. Kumar, T.R. Penki, B. Kishore, N. Munichandraiah, Co-2(OH)(3)Cl xerogels with 3D interconnected mesoporous structures as a novel high-performance supercapacitor material. J. Solid State Electrochem. 21, 133–143 (2017)CrossRefGoogle Scholar
  33. 33.
    Q. Zhang, N. Wang, P. Zhao, M. Yao, W. Hu, Azide-assisted hydrothermal synthesis of N-doped mesoporous carbon cloth for high-performance symmetric supercapacitor employing LiClO4 as electrolyte. Compos. A 98, 58–65 (2017)CrossRefGoogle Scholar
  34. 34.
    Q. Wang, Y. Ma, Y. Wu, D. Zhang, M. Miao, Flexible asymmetric threadlike supercapacitors based on NiCo2Se4 nanosheet and NiCo2O4/polypyrrole electrodes. ChemSusChem 10, 1427–1435 (2017)CrossRefGoogle Scholar
  35. 35.
    W. Guo, Y. Li, Y. Tang, S. Chen, Z. Liu, L. Wang, Y. Zhao, F. Gao, TiO2 nanowire arrays on titanium substrate as a novel binder-free negative electrode for asymmetric supercapacitor. Electrochim. Acta 229, 197–207 (2017)CrossRefGoogle Scholar
  36. 36.
    W. Ma, S. Chen, S. Yang, W. Chen, Y. Cheng, Y. Guo, S. Peng, S. Ramakrishna, M. Zhu, Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J. Power Sources 306, 481–488 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jilin Supercapacitor Engineering Laboratory, College of PhysicsJilin UniversityChangchunChina
  2. 2.International Center of Future ScienceJilin UniversityChangchunChina
  3. 3.School of Physics and Electronic EngineeringLinyi UniversityLinyiChina

Personalised recommendations