Advertisement

ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber

  • K. Kaviyarasu
  • Genene T. MolaEmail author
  • S. O. Oseni
  • K. Kanimozhi
  • C. Maria Magdalane
  • J. Kennedy
  • M. Maaza
Article
  • 85 Downloads

Abstract

In this paper, we reported the synthesis of high-quality ZnO-doped SWCNT (ZnO:SWCNT) nanostructures by perfume spray pyrolysis on copper substrate. The synthesized ZnO:SWCNT nanoparticle explored for the optoelectronic properties and its potential application in photonic devices. In this investigation, the ZnO:SWCNT was blended with the solar absorber of thin film organic solar cells which is found to be a successful mechanism in enhancing the photo-generated current in the devices. The best device performance was found at 6% concentration of ZnO:SWCNT by weight in the solution phase of the solar absorber. Furthermore, the pure ZnO:SWCNT as a gas sensor shows good sensitivity to ethanol at different gas loading in ppm. We observed for the first time a high gas sensing activity of ZnO:SWCNT powder which is related to surface state, oxygen adsorption, grain size and lattice defects. The article discusses about the techniques employed during gas sensing measurements using various functionalization strategies.

Notes

Acknowledgements

The authors gratefully acknowledge research funding from UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, Pretoria, South Africa, (Research Grant Fellowship of framework Post-Doctoral Fellowship program under contract number Research Fund: 139000). One of the authors (Dr. K. Kaviyarasu) is grateful to Prof. M. Maaza, Nanoscience’s African network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), Somerset West, South Africa for his constant support, help and encouragement. G.T. Mola is grateful for National Research Foundation (NRF), South Africa.

References

  1. 1.
    H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, M. Wabaidur, Molecules 19, 17329 (2014)CrossRefGoogle Scholar
  2. 2.
    S.O. Oseni, G.T. Mola, Sol. Energy 150, 66–72 (2017)CrossRefGoogle Scholar
  3. 3.
    E.A.A. Arbab, G.T. Mola, Appl. Phys. A 122, 405 (2016)CrossRefGoogle Scholar
  4. 4.
    P. Tonui, S.O. Oseni, G. Sharma, Q. Yan, G.T. Mola, Renew. Sustain. Energy Rev. 91, 1025–1044 (2018)CrossRefGoogle Scholar
  5. 5.
    T.M. Barnes, J.D. Bergeson, R.C. Tenent, B.A. Larsen, G. Teeter, K.M. Jones, J.L. Blackburn, J. van de Lagemaat, Appl. Phys. Lett. 96, 243309 (2010)CrossRefGoogle Scholar
  6. 6.
    K. Sears, G. Fanchini, S.E. Watkins, C.P. Huynh, S.C. Hawkins, Thin Solid Films 531, 525 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Capasso, L. Salamandra, A. Chou, A. Di Carlo, N. Motta, Sol. Energy Mater. Sol. Cell 122, 297 (2014)CrossRefGoogle Scholar
  8. 8.
    R.A. Hatton, N. Blanchard, L.W. Tan, G. Latini, F. Cacialli, S.R.P. Silva, Org. Electron. 10, 388 (2009)CrossRefGoogle Scholar
  9. 9.
    S.H. Jin, S.I. Cha, G.H. Jun, J.Y. Oh, S. Jeon, S.H. Hong, Syn. Met. 181, 92 (2013)CrossRefGoogle Scholar
  10. 10.
    H.P. Kim, A.R. bin Mohd Yusoff, H.M. Kim, H.J. Lee, G.J. Seo, J. Jang, Nanoscale Res. Lett. 9, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Jin, G.H. Jun, S. Jeon, S.H. Hong, Nano Conv. 3, 1 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Derbal-Habak, C. Bergeret, J. Cousseau, J. Nunzi, Sol. Energy Mater. Sol. Cell 95, S53 (2011)CrossRefGoogle Scholar
  13. 13.
    W.K. Lin, S.H. Su, M.C. Yeh, Y.C. Huang, M. Yokoyama, Jpn. J. Appl. Phys. 55, 01AE06 (2015)CrossRefGoogle Scholar
  14. 14.
    T. Salim, H.W. Lee, L.H. Wong, Z. Bao, Y.M. Lam, Adv. Funct. Mater. 26, 51 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Keru, P.G. Ndungu, V.O. Nyamori, Int. J. Energy Res. 38, 1635 (2014)CrossRefGoogle Scholar
  16. 16.
    E. Arici, S. Karazhanov, Mater. Sci. Semicond. Proc. 41, 137 (2016)CrossRefGoogle Scholar
  17. 17.
    J.M. Lee, J.S. Park, S.H. Lee, H. Kim, S. Yoo, S.O. Kim, Adv. Mater. 23, 629 (2011)CrossRefGoogle Scholar
  18. 18.
    R.V. Salvatierra, C.E. Cava, L.S. Roman, A.J. Zarbin, Adv. Funct. Mater. 23, 1490 (2013)CrossRefGoogle Scholar
  19. 19.
    I. Jeon, D. Kutsuzawa, Y. Hashimoto, T. Yanase, T. Nagahama, T. Shimada, Y. Matsuo, Org. Electron. 17, 175 (2015)CrossRefGoogle Scholar
  20. 20.
    J.M. Lee, B.H. Kwon, H.I. Park, H. Kim, M.G. Kim, J.S. Park, E.S. Kim, S. Yoo, D.Y. Jeon, S.O. Kim, Adv. Mater. 25, 2011 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Cakmak, H.Y. Guney, S.A. Yuksel, S. Gunes, Physica B 461, 85 (2015)CrossRefGoogle Scholar
  22. 22.
    X.G. Mbuyise, E.A.A. Arbab, K. Kaviyarasu, G. Pellicane, M. Maaza, G.T. Mola, J. Alloy Compd. 706, 344 (2017)CrossRefGoogle Scholar
  23. 23.
    S.H. Jin, G.H. Jun, S.H. Hong, S. Jeon, Carbon 50, 4483 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Tessema, Appl. Phys. A 106, 53 (2012)CrossRefGoogle Scholar
  25. 25.
    V. Coropceanu, J. Cornil, Y. Olivier, R. Silbey, J.L. Bredas, Chem. Rev. 107, 926 (2007)CrossRefGoogle Scholar
  26. 26.
    B.A. Taleatu, E. Omotoso, C. Lal, W.O. Makind, K.T. Ogundele, E. Ajenifuja, A.R. Lasisi, M.A. Eleruja, G.T. Mola, Surf. Interface Anal. 46, 372 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Ago, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Phys. Rev. B 61, 2286 (2000)CrossRefGoogle Scholar
  28. 28.
    M.V. Arularasu, M. Anbarasu, S. Poovaragan, R. Sundaram, K. Kanimozhi, C. Maria Magdalane, K. Kaviyarasu, F.T. Thema, D. Letsholathebe, G.T. Mola, M. Maaza, J. Nanosci. Nanotechnol. 17, 1–7 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Simo, K. Kaviyarasu, B. Mwakikunga, R. Madjoe, A. Gibaud, M. Maaza, J. Electron Spectrosc. Relat. Phenom. 216, 23–32 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Simo, K. Kaviyarasu, B. Mwakikunga, M. Mokwena, M. Maaza, Ceram. Int. 43, 1347–1353 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology Laboratories, College of Graduate StudiesUniversity of South Africa (UNISA)PretoriaSouth Africa
  2. 2.Nanosciences African network (NANOAFNET), Materials Research Group (MRG)iThemba LABS-National Research Foundation (NRF)Somerset WestSouth Africa
  3. 3.School of Chemistry and PhysicsUniversity of Kwazulu-NatalPietermaritzburgSouth Africa
  4. 4.Department of ChemistryAuxilium College (Autonomous)VelloreIndia
  5. 5.Department of ChemistrySt. Xavier’s College (Autonomous)TirunelveliIndia
  6. 6.LIFE, Department of ChemistryLoyola College (Autonomous)ChennaiIndia
  7. 7.National Isotope CentreGNS ScienceLower HuttNew Zealand

Personalised recommendations