Advertisement

Mesoporous silica coated graphene oxide: fabrication, characterization and effects on the dielectric properties of its organosilicon hybrid films

  • Jinpeng MoEmail author
  • Wenshi MaEmail author
  • Guorong Qiu
  • Yangyang Shi
Article
  • 41 Downloads

Abstract

In this research, the graphene oxide was coated with mesoporous silica via sol–gel process. For acquiring mesoporous silica coated graphene oxide with different properties, reduction and calcination also have been applied during preparation. Subsequently, different organosilicon hybrid film samples of mesoporous silica coated graphene oxide have been prepared via in-situ polymerization. By applying transmission electron microscope, scanning electron microscope, X-ray powder diffraction, Raman spectra, Fourier transform infrared spectra, and X-ray photoelectron spectrometer, the physical structure and chemical structure of the mesoporous silica coated graphene oxide with different properties have been fully characterized. As a result, the existence of graphene oxide has also been confirmed. The dielectric analyses of different hybrid film samples reveal the effects of reduction and calcination on the dielectric properties of final hybrid film samples. So we believe that this research can offer inspiration for preparing a novel dielectric graphene-hybrid material.

Notes

Acknowledgements

The work was supported by Science and Technology Planning Project of Zhaoqing City (2015B010902010), and Science and Technology Project of Administration of quality and Technology Supervision of Guangdong Province (2017CT30).

References

  1. 1.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  3. 3.
    D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Zhong, Z. Zhen, H. Zhu, Graphene: fundamental research and potential applications. Flatchem 4, 20–32 (2017)CrossRefGoogle Scholar
  5. 5.
    J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Qiang, L.L. Hu, L.X. Gong, L. Zhao, S.N. Li, L.C. Tang, Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbons/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem. Eng. J. 334, 2154–2166 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Cao, Q. Lyu, J. Li, Y. Wang, B. Yang, S. Szunerits, R. Boukherrou, Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem. Eng. J. 326, 17–28 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Ge, L.A. Shi, Y.C. Wang, H.Y. Zhao, H.B. Yao, Y.B. Zhu, Y. Zhang, H.W. Zhu, H.A. Wu, S.H. Yu, Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 12, 434–440 (2017)CrossRefGoogle Scholar
  9. 9.
    Q. Zhao, X. Zhu, B. Chen, Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. Chem. Eng. J. 334, 1119–1127 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Manoj, K. Theyagarajan, D. Saravanakumar, S. Senthilkumar, K. Thenmozhi, Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens. Bioelectron. 103, 104–112 (2018)CrossRefGoogle Scholar
  11. 11.
    N. Hao, R. Hua, S. Chen, Y. Zhang, Z. Zhou, J. Qian, Q. Liu, K. Wang, Multiple signal-amplification via Ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens. Bioelectron. 101, 14–20 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Song, J. Zheng, S. Feng, C. Zhu, S. Fu, W. Zhao, D. Du, Y. Lin, Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries. Carbon 128, 63–69 (2018)CrossRefGoogle Scholar
  13. 13.
    P. He, K. Zhao, B. Huang, B. Zhang, Q. Huang, T. Chen, Q. Zhang, Mechanically robust and size-controlled MoS2/graphene hybrid aerogels as high-performance anodes for lithium-ion batteries. J. Mater. Sci. 53, 1–12 (2017)CrossRefGoogle Scholar
  14. 14.
    M.A. Kebede, N. Palaniyandy, R.M. Ramadan, E. Sheha, The electrical and electrochemical properties of graphene nanoplatelets modified 75V2O5–25P2O5 glass as a promising anode material for lithium ion battery. J. Alloy. Compd. 735, 445–453 (2018)CrossRefGoogle Scholar
  15. 15.
    Q. Li, X. Guo, Y. Zhang, W. Zhang, C. Ge, L. Zhao, X. Wang, H. Zhang, J. Chen, Z. Wang, L. Sun, Porous graphene paper for supercapacitor applications. J. Mater. Sci. Technol. 33, 793–799 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Iwan, A. Chuchmała, Perspectives of applied graphene: polymer solar cells. Prog. Polym. Sci. 37, 1805–1828 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Huang, W. Chen, L. Yan, An inorganic-organic double network hydrogel of graphene and polymer. Nanoscale 5, 6034–6039 (2013)CrossRefGoogle Scholar
  19. 19.
    M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Mo, W. Ma, W. Zhang, J. Yuan, Structure and properties of carbon intercalated halloysite and its organosilicone hybrid film with low dielectric constant. Mater. Des. 128, 56–63 (2017)CrossRefGoogle Scholar
  21. 21.
    T. Wang, J. Yu, M. Wang, Y. Cao, W. Dai, D. Shen, L. Guo, Y. Wu, H. Bai, D. Dai, J. Lyu, N. Jiang, C. Pan, C.-T. Lin, Effect of different sizes of graphene on thermal transport performance of graphene paper. Compos. Commun. 5, 46–53 (2017)CrossRefGoogle Scholar
  22. 22.
    K.-W. Kim, J.H. Kim, S. Cho, K. Shin, S.H. Kim, Scalable high-performance graphene paper with enhanced electrical and mechanical properties. Thin Solid Films 632, 50–54 (2017)CrossRefGoogle Scholar
  23. 23.
    J.E. Baek, J.Y. Kim, H.M. Jin, B.H. Kim, K.E. Lee, S.O. Kim, Single-step self-assembly of multilayer graphene based dielectric nanostructures. Flatchem 4, 61–67 (2017)CrossRefGoogle Scholar
  24. 24.
    A.J. Paleo, A. Zille, F.W. Van Hattum, A. Ares-Pernas, J.A. Agostinho, Dielectric relaxation of near-percolated carbon nanofiber polypropylene composites. Physica B 516, 41–47 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Zhang, H. Li, X. Lai, X. Su, T. Liang, X. Zeng, Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem. Eng. J. 316, 736–743 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Su, H. Li, X. Lai, Z. Yang, Z. Chen, W. Wu, X. Zeng, Vacuum-assisted layer-by-layer superhydrophobic carbon nanotube films with electrothermal and photothermal effects for deicing and controllable manipulation. J. Mater. Chem. A 6, 16910–16919 (2018)CrossRefGoogle Scholar
  27. 27.
    Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 24, 3134–3137 (2012)CrossRefGoogle Scholar
  28. 28.
    W. Yu, J. Fu, X. Dong, L. Chen, L. Shi, A graphene hybrid material functionalized with POSS: synthesis and applications in low-dielectric epoxy composites. Compos. Sci. Technol. 92, 112–119 (2014)CrossRefGoogle Scholar
  29. 29.
    J.Y. Wang, S.Y. Yang, Y.L. Huang, H.W. Tien, W.K. Chin, C.C.M. Ma, Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situpolymerization. J. Mater. Chem. 21, 13569–13575 (2011)CrossRefGoogle Scholar
  30. 30.
    C.Q. Li, J.W. Zha, H.Q. Long, S.J. Wang, D.L. Zhang, Z.M. Dang, Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer. Compos. Sci. Technol. 153, 111–118 (2017)CrossRefGoogle Scholar
  31. 31.
    X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog. Mater Sci. (2018).  https://doi.org/10.1016/j.pmatsci.2017.12.003 Google Scholar
  32. 32.
    P. Xu, J. Loomis, B. Panchapakesan, Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites. Nanotechnology 23, 3847–3856 (2012)Google Scholar
  33. 33.
    J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J. Mater. Chem. 20, 1722–1727 (2010)CrossRefGoogle Scholar
  34. 34.
    Z. Gholami, A.Z. Abdullah, K.T. Lee, Heterogeneously catalyzed etherification of glycerol to diglycerol over calcium–lanthanum oxide supported on MCM-41: a heterogeneous basic catalyst. Appl. Catal. A 479, 76–86 (2014)CrossRefGoogle Scholar
  35. 35.
    J. He, S. Unser, I. Bruzas, R. Cary, Z. Shi, R. Mehra, K. Aron, Sagle, L The Facile Removal Of CTAB From The Surface Of Gold Nanorods. Colloid Surf. B 163, 140–145 (2018)CrossRefGoogle Scholar
  36. 36.
    H. Saleem, M. Haneef, H.Y. Abbasi, Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 204, 1–7 (2018)CrossRefGoogle Scholar
  37. 37.
    W. Ma, F. Yang, J. Shi, F. Wang, Z. Zhang, S. Wang, Silicone based nanofluids containing functionalized graphene nanosheets. Colloid Surf. A 431, 120–126 (2013)CrossRefGoogle Scholar
  38. 38.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  39. 39.
    F. Dong, Y. Zhao, W. Han, H. Zhao, G. Lu, Z. Tang, Co nanoparticles anchoring three dimensional graphene lattice as bifunctional catalyst for low-temperature CO oxidation. Mol. Catal. 439, 118–127 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  41. 41.
    C. Ahn, T. Okada, M. Ishida, E. Yoo, H. Zhou, Electrochemical characteristic of based on carbon mixed with organic metal complex (Co (mqph)) in alkaline media Li-air battery. J. Power Sources 307, 474–480 (2016)CrossRefGoogle Scholar
  42. 42.
    F. Li, Y. Guo, T. Wu, Y. Liu, W. Wang, J. Gao, Platinum nano-catalysts deposited on reduced graphene oxides for alcohol oxidation. Electrochim. Acta 111, 614–620 (2013)CrossRefGoogle Scholar
  43. 43.
    V. Raicu, C. Gusbeth, D.F. Anghel, G. Turcu, Effects of cetyltrimethylammonium bromide (CTAB) surfactant upon the dielectric properties of yeast cells. BBA Gen. Subj. 1379, 7–15 (1998)CrossRefGoogle Scholar
  44. 44.
    A. Lengálová, V. Pavlínek, P. Sáha, J. Stejskal, T. Kitano, O. Quadrat, The effect of dielectric properties on the electrorheology of suspensions of silica particles coated with polyaniline. Physica A 321, 411–424 (2003)CrossRefGoogle Scholar
  45. 45.
    A. Xie, Y. Wang, P. Jiang, S. Li, X. Huang, Nondestructive functionalization of carbon nanotubes by combining mussel-inspired chemistry and RAFT polymerization: towards high dielectric nanocomposites with improved thermal management capability. Compos. Sci. Technol. 154, 154–164 (2018)CrossRefGoogle Scholar
  46. 46.
    Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q. Zheng, Q. Zheng, J.K. Kim, Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly (vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017)CrossRefGoogle Scholar
  47. 47.
    J. Lin, X. Wang, Preparation, microstructure, and properties of novel low-κ brominated epoxy/mesoporous silica composites. Eur. Polym. J. 44, 1414–1427 (2008)CrossRefGoogle Scholar
  48. 48.
    G. Huang, S. Wang, P. Song, C. Wu, S. Chen, X. Wang, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos. A 59, 18–25 (2014)CrossRefGoogle Scholar
  49. 49.
    W. Fang, X. Zeng, X. Lai, H. Li, W. Chen, Y. Zhang, Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane. Thermochim. Acta 605, 28–36 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.China BlueStar Guangzhou Research Institute of Synthetic MaterialsGuangzhouChina
  3. 3.South China Institute of Collaborative InnovationDongguanChina

Personalised recommendations