Advertisement

Excellent-Δε′, very low-tanδ, giant-ε′ and nonlinear JE properties of Zn2+-doped CaCu3Ti4.1@4.2O12 ceramics

  • Chatchawal Sripakdee
  • Krissana Prompa
  • Kittipong Sitthikul
  • Thanin PutjusoEmail author
Article
  • 77 Downloads

Abstract

In this work, the dielectric properties of Zn2+ doped CaCu3Ti4.1@4.2O12 (0 ≤ x ≤ 0.1) ceramics were investigated. A giant dielectric constant (ε′ ~ 8955–20639) and very low loss tangent (tanδ ~ 0.005–0.015) with an excellent temperature coefficient (Δε′ less than ± 15% over a temperature range of ~ − 60–180 °C) were achieved in CaCu2.90Zn0.10Ti4.1O12 and CaCu2.95Zn0.05Ti4.2O12 ceramics sintered at 1080 °C and 1100 °C for 8 h. The very low tanδ and excellent Δε′ obtained in these ceramics was due to a very high grain boundary resistance (Rgb), caused by the high density of grains and the presence of a TiO2-rich phase at the GBs. These excellent dielectric properties suggest a potential application for use in high temperature X7R and X8R capacitors. It was found that the tanδ values decreased with increasing sintering temperature due to an increase in a TiO2-rich phase. Nonlinear characteristics were observed in all ceramics, with significant enhancements in the nonlinear coefficient (α) and breakdown field (Eb) due to Zn2+doping. The best dielectric properties, ε′ (17598), tanδ (0.005), α (13.10) and Eb (5401.70 V·cm−1), with excellent-Δε′ (− 60–190 °C), were achieved in a CaCu2.95Zn0.05Ti4.2O12 ceramic sintered at 1100 °C for 8 h.

Notes

Acknowledgements

This work was financially supported by Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Hua Hin, Prachaubkerekhan, Thailand. It was also supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (PHD/0207/2558). We are also grateful to the Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand, for their co-financial support. The Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand is acknowledged for XANES measurements.

References

  1. 1.
    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, Mater. Des. 92, 494–498 (2016)CrossRefGoogle Scholar
  3. 3.
    J.-W. Lee, J.-H. Koh, Ceram. Int. 41, 10442–10447 (2015)CrossRefGoogle Scholar
  4. 4.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Deng, X. Sun, S. Liu, L. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320–329 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Liu, H. Fan, X. Chen, P. Fang, J. Alloy. Compd. 469, 529–534 (2009)CrossRefGoogle Scholar
  7. 7.
    L. Liu, H. Fan, P. Fang, L. Jin, Solid State Commun. 142, 573–576 (2007)CrossRefGoogle Scholar
  8. 8.
    L. Liu, H. Fan, L. Wang, X. Chen, P. Fang, Philos. Mag. 88, 537–545 (2008)CrossRefGoogle Scholar
  9. 9.
    L. Liu, H. Fan, P. Fang, X. Chen, Mater. Res. Bull. 43, 1800–1807 (2008)CrossRefGoogle Scholar
  10. 10.
    L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Mater. Chem. Phys. 139, 844–850 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Han, S. Ren, J. Deng, T. Yan, X. Ma, B. Peng, L. Liu, J. Mater. Sci. Mater. Electron. 28, 17378–17387 (2017)CrossRefGoogle Scholar
  12. 12.
    Q. Zheng, H. Fan, J. Mater. Sci. Technol. 28, 920–926 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320–329 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Thongyong, W. Tuichai, N. Chanlek, P. Thongbai, Ceram. Int. 43, 15466–15471 (2017)CrossRefGoogle Scholar
  15. 15.
    Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, J. Eur. Ceram. Soc. 37, 115–122 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Huang, W. Zhang, J. Xie, Q. Xu, L. Zhang, H. Hao, H. Liu, M. Cao, J. Mater. Sci. Mater. Electron. 28, 4204–4210 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Yang, G. Huang, T. Wang, H. Hao, Y. Tian, Ceram. Int. 42, 9935–9939 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Huang, D. Shi, L. Liu, G. Li, S. Zheng, L. Fang, Appl. Phys. A 114, 891–896 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Sun, J. Deng, S. Liu, T. Yan, B. Peng, W. Jia, Z. Mei, H. Su, L. Fang, L. Liu, Appl. Phys. A 122, 864 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Liu, X. Sun, B. Peng, H. Su, Z. Mei, Y. Huang, J. Deng, C. Su, L. Fang, L. Liu, J. Electroceram. 37, 137–144 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Li, L. Fang, L. Liu, Y. Huang, C. Hu, Mater. Sci. Eng. B 177, 673–677 (2012)CrossRefGoogle Scholar
  22. 22.
    X. Liu, H. Fan, J. Shi, Q. Li, Sci. Rep. 5, 12699 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, RSC Adv. 6, 48708–48714 (2016)CrossRefGoogle Scholar
  24. 24.
    Z. Tang, Y. Huang, K. Wu, J. Li, J. Eur. Ceram. Soc. 38, 1569–1575 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Kafi, A. Kompany, H. Arabi, A. Khorsand Zak, J. Alloy. Compd. 727, 168–176 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, J. Alloy. Compd. 663, 345–350 (2016)CrossRefGoogle Scholar
  27. 27.
    E. Swatsitang, T. Putjuso, J. Eur. Ceram. Soc. 38, 4994–5001 (2018)CrossRefGoogle Scholar
  28. 28.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Mater. Res. Bull. 77, 178–184 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Jumpatam, P. Thongbai, T. Yamwong, S. Maensiri, Ceram. Int. 41, S498–S503 (2015)CrossRefGoogle Scholar
  30. 30.
    P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloy. Compd. 509, 7416–7420 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, J. Eur. Ceram. Soc. 38, 137–143 (2018)CrossRefGoogle Scholar
  32. 32.
    J. Boonlakhorn, P. Thongbai, Ceram. Int. 43, 12736–12741 (2017)CrossRefGoogle Scholar
  33. 33.
    K. Prompa, E. Swatsitang, T. Putjuso, Ceram. Int. 44, 20739–20748 (2018)CrossRefGoogle Scholar
  34. 34.
    E. Swatsitang, K. Prompa, T. Putjuso, J. Mater. Sci. Mater. Electron. 29, 12639–12651 (2018)CrossRefGoogle Scholar
  35. 35.
    W. Hao, P. Xu, M. Wang, S. Yang, W. Yupeng, H. Wu, L. Sun, E. Cao, Y. Zhang, J. Alloy. Compd. 740, 1159–1164 (2018)CrossRefGoogle Scholar
  36. 36.
    X. Ouyang, M. Habib, P. Cao, S. Wei, Z. Huang, W. Zhang, W. Gao, Ceram. Int. 41, 13447–13454 (2015)CrossRefGoogle Scholar
  37. 37.
    Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, Appl. Phys. Lett. 88, 172902 (2006)CrossRefGoogle Scholar
  38. 38.
    K. Prompa, E. Swatsitang, C. Saiyasombat, T. Putjuso, Ceram. Int. 44, 13267–13277 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Newville, J. Synchrotron. Radiat. 8, 96–100 (2001)CrossRefGoogle Scholar
  40. 40.
    B. Ravel, M. Newville, J. Synchrotron. Radiat. 12, 537–541 (2005)CrossRefGoogle Scholar
  41. 41.
    S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, J. Alloy. Compd. 551, 456–462 (2013)CrossRefGoogle Scholar
  42. 42.
    B. Zhang, Q. Zhao, A. Chang, H. Ye, S. Chen, Y. Wu, Ceram. Int. 40, 11221–11227 (2014)CrossRefGoogle Scholar
  43. 43.
    X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloy. Compd. 708, 1026–1032 (2017)CrossRefGoogle Scholar
  44. 44.
    B. Zhang, Q. Zhao, A. Chang, Y. Wu, J. Alloy. Compd. 663, 474–479 (2016)CrossRefGoogle Scholar
  45. 45.
    W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, S. Maensiri, J. Alloy. Compd. 703, 139–147 (2017)CrossRefGoogle Scholar
  46. 46.
    Z. Weng, C. Wu, Z. Xiong, Y. Feng, H. AminiRastabi, C. Song, H. Xue, J. Eur. Ceram. Soc. 37, 4667–4672 (2017)CrossRefGoogle Scholar
  47. 47.
    B. Guo, P. Liu, X. Cui, Y. Song, Ceram. Int. 44, 12137–12143 (2018)CrossRefGoogle Scholar
  48. 48.
    J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Mater. Sci. Mater. Electron. 26, 2329–2337 (2015)CrossRefGoogle Scholar
  49. 49.
    P. Kum-onsa, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 35, 1441–1447 (2015)CrossRefGoogle Scholar
  50. 50.
    J. Shi, H. Fan, X. Liu, Y. Ma, Q. Li, J. Alloy. Compd. 627, 463–467 (2015)CrossRefGoogle Scholar
  51. 51.
    J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Ceram. Int. 43, 2705–2711 (2017)CrossRefGoogle Scholar
  52. 52.
    E. Jansen, W. Schäfer, G. Will, J. Appl. Crystallogr. 27, 492–496 (1994)CrossRefGoogle Scholar
  53. 53.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
  54. 54.
    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 34, 2941–2950 (2014)CrossRefGoogle Scholar
  55. 55.
    J. Jumpatam, A. Mooltang, B. Putasaeng, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, Ceram. Int. 42, 16287–16295 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 232903 (2006)CrossRefGoogle Scholar
  57. 57.
    W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Mater. Des. 123, 15–23 (2017)CrossRefGoogle Scholar
  58. 58.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (Wiley, New York, 2003), p. 310CrossRefGoogle Scholar
  59. 59.
    J. Zhao, C. Zhang, C. Hu, K. Lu, J. Eur. Ceram. Soc. 37, 3353–3359 (2017)CrossRefGoogle Scholar
  60. 60.
    T. Li, D. Liu, H. Dai, H. Xiang, Z. Chen, H. He, Z. Chen, J. Alloy. Compd. 599, 145–149 (2014)CrossRefGoogle Scholar
  61. 61.
    L. Ramajo, R. Parra, J.A. Varela, M.M. Reboredo, M.A. Ramírez, M.S. Castro, J. Alloy. Compd. 497, 349–353 (2010)CrossRefGoogle Scholar
  62. 62.
    S.-Y. Chung, J.-H. Choi, J.-K. Choi, Appl. Phys. Lett. 91, 091912 (2007)CrossRefGoogle Scholar
  63. 63.
    L.J. Liu, L. Fang, Y.M. Huang, Y.H. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, C.Z. Hu, J. Appl. Phys. 110, 094101 (2011)CrossRefGoogle Scholar
  64. 64.
    Y. Huang, L. Liu, D. Shi, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadi, Ceram. Int. 39, 6063–6068 (2013)CrossRefGoogle Scholar
  65. 65.
    Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci. Mater. Electron. 24, 1994–1999 (2013)CrossRefGoogle Scholar
  66. 66.
    L. Liu, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, L. Fang, C. Hu, J. Mater. Sci. 47, 2294–2299 (2012)CrossRefGoogle Scholar
  67. 67.
    G. Li, Z. Chen, X. Sun, L. Liu, L. Fang, B. Elouadi, Mater. Res. Bull. 65, 260–265 (2015)CrossRefGoogle Scholar
  68. 68.
    W. Somphan, P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 48, 4087–4092 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chatchawal Sripakdee
    • 1
  • Krissana Prompa
    • 2
  • Kittipong Sitthikul
    • 3
  • Thanin Putjuso
    • 3
    Email author
  1. 1.Department of Science, Faculty of Science and TechnologyRajamangala University of Technology Phra NakhonBangkokThailand
  2. 2.Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.School of General Science, Faculty of Liberal ArtsRajamangala University of Technology RattanakosinHua HinThailand

Personalised recommendations