Excellent-Δε′, very low-tanδ, giant-ε′ and nonlinear J–E properties of Zn2+-doped CaCu3Ti4.1@4.2O12 ceramics
- 77 Downloads
Abstract
In this work, the dielectric properties of Zn2+ doped CaCu3Ti4.1@4.2O12 (0 ≤ x ≤ 0.1) ceramics were investigated. A giant dielectric constant (ε′ ~ 8955–20639) and very low loss tangent (tanδ ~ 0.005–0.015) with an excellent temperature coefficient (Δε′ less than ± 15% over a temperature range of ~ − 60–180 °C) were achieved in CaCu2.90Zn0.10Ti4.1O12 and CaCu2.95Zn0.05Ti4.2O12 ceramics sintered at 1080 °C and 1100 °C for 8 h. The very low tanδ and excellent Δε′ obtained in these ceramics was due to a very high grain boundary resistance (Rgb), caused by the high density of grains and the presence of a TiO2-rich phase at the GBs. These excellent dielectric properties suggest a potential application for use in high temperature X7R and X8R capacitors. It was found that the tanδ values decreased with increasing sintering temperature due to an increase in a TiO2-rich phase. Nonlinear characteristics were observed in all ceramics, with significant enhancements in the nonlinear coefficient (α) and breakdown field (Eb) due to Zn2+doping. The best dielectric properties, ε′ (17598), tanδ (0.005), α (13.10) and Eb (5401.70 V·cm−1), with excellent-Δε′ (− 60–190 °C), were achieved in a CaCu2.95Zn0.05Ti4.2O12 ceramic sintered at 1100 °C for 8 h.
Notes
Acknowledgements
This work was financially supported by Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Hua Hin, Prachaubkerekhan, Thailand. It was also supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (PHD/0207/2558). We are also grateful to the Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand, for their co-financial support. The Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand is acknowledged for XANES measurements.
References
- 1.R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)CrossRefGoogle Scholar
- 2.J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, Mater. Des. 92, 494–498 (2016)CrossRefGoogle Scholar
- 3.J.-W. Lee, J.-H. Koh, Ceram. Int. 41, 10442–10447 (2015)CrossRefGoogle Scholar
- 4.T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)CrossRefGoogle Scholar
- 5.J. Deng, X. Sun, S. Liu, L. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320–329 (2017)CrossRefGoogle Scholar
- 6.L. Liu, H. Fan, X. Chen, P. Fang, J. Alloy. Compd. 469, 529–534 (2009)CrossRefGoogle Scholar
- 7.L. Liu, H. Fan, P. Fang, L. Jin, Solid State Commun. 142, 573–576 (2007)CrossRefGoogle Scholar
- 8.L. Liu, H. Fan, L. Wang, X. Chen, P. Fang, Philos. Mag. 88, 537–545 (2008)CrossRefGoogle Scholar
- 9.L. Liu, H. Fan, P. Fang, X. Chen, Mater. Res. Bull. 43, 1800–1807 (2008)CrossRefGoogle Scholar
- 10.L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Mater. Chem. Phys. 139, 844–850 (2013)CrossRefGoogle Scholar
- 11.F. Han, S. Ren, J. Deng, T. Yan, X. Ma, B. Peng, L. Liu, J. Mater. Sci. Mater. Electron. 28, 17378–17387 (2017)CrossRefGoogle Scholar
- 12.Q. Zheng, H. Fan, J. Mater. Sci. Technol. 28, 920–926 (2012)CrossRefGoogle Scholar
- 13.J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320–329 (2017)CrossRefGoogle Scholar
- 14.N. Thongyong, W. Tuichai, N. Chanlek, P. Thongbai, Ceram. Int. 43, 15466–15471 (2017)CrossRefGoogle Scholar
- 15.Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, J. Eur. Ceram. Soc. 37, 115–122 (2017)CrossRefGoogle Scholar
- 16.X. Huang, W. Zhang, J. Xie, Q. Xu, L. Zhang, H. Hao, H. Liu, M. Cao, J. Mater. Sci. Mater. Electron. 28, 4204–4210 (2017)CrossRefGoogle Scholar
- 17.L. Yang, G. Huang, T. Wang, H. Hao, Y. Tian, Ceram. Int. 42, 9935–9939 (2016)CrossRefGoogle Scholar
- 18.Y. Huang, D. Shi, L. Liu, G. Li, S. Zheng, L. Fang, Appl. Phys. A 114, 891–896 (2014)CrossRefGoogle Scholar
- 19.X. Sun, J. Deng, S. Liu, T. Yan, B. Peng, W. Jia, Z. Mei, H. Su, L. Fang, L. Liu, Appl. Phys. A 122, 864 (2016)CrossRefGoogle Scholar
- 20.S. Liu, X. Sun, B. Peng, H. Su, Z. Mei, Y. Huang, J. Deng, C. Su, L. Fang, L. Liu, J. Electroceram. 37, 137–144 (2016)CrossRefGoogle Scholar
- 21.Y. Li, L. Fang, L. Liu, Y. Huang, C. Hu, Mater. Sci. Eng. B 177, 673–677 (2012)CrossRefGoogle Scholar
- 22.X. Liu, H. Fan, J. Shi, Q. Li, Sci. Rep. 5, 12699 (2015)CrossRefGoogle Scholar
- 23.G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, RSC Adv. 6, 48708–48714 (2016)CrossRefGoogle Scholar
- 24.Z. Tang, Y. Huang, K. Wu, J. Li, J. Eur. Ceram. Soc. 38, 1569–1575 (2018)CrossRefGoogle Scholar
- 25.Z. Kafi, A. Kompany, H. Arabi, A. Khorsand Zak, J. Alloy. Compd. 727, 168–176 (2017)CrossRefGoogle Scholar
- 26.L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, L. Ju, J. Alloy. Compd. 663, 345–350 (2016)CrossRefGoogle Scholar
- 27.E. Swatsitang, T. Putjuso, J. Eur. Ceram. Soc. 38, 4994–5001 (2018)CrossRefGoogle Scholar
- 28.J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Mater. Res. Bull. 77, 178–184 (2016)CrossRefGoogle Scholar
- 29.J. Jumpatam, P. Thongbai, T. Yamwong, S. Maensiri, Ceram. Int. 41, S498–S503 (2015)CrossRefGoogle Scholar
- 30.P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloy. Compd. 509, 7416–7420 (2011)CrossRefGoogle Scholar
- 31.J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai, J. Eur. Ceram. Soc. 38, 137–143 (2018)CrossRefGoogle Scholar
- 32.J. Boonlakhorn, P. Thongbai, Ceram. Int. 43, 12736–12741 (2017)CrossRefGoogle Scholar
- 33.K. Prompa, E. Swatsitang, T. Putjuso, Ceram. Int. 44, 20739–20748 (2018)CrossRefGoogle Scholar
- 34.E. Swatsitang, K. Prompa, T. Putjuso, J. Mater. Sci. Mater. Electron. 29, 12639–12651 (2018)CrossRefGoogle Scholar
- 35.W. Hao, P. Xu, M. Wang, S. Yang, W. Yupeng, H. Wu, L. Sun, E. Cao, Y. Zhang, J. Alloy. Compd. 740, 1159–1164 (2018)CrossRefGoogle Scholar
- 36.X. Ouyang, M. Habib, P. Cao, S. Wei, Z. Huang, W. Zhang, W. Gao, Ceram. Int. 41, 13447–13454 (2015)CrossRefGoogle Scholar
- 37.Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, Appl. Phys. Lett. 88, 172902 (2006)CrossRefGoogle Scholar
- 38.K. Prompa, E. Swatsitang, C. Saiyasombat, T. Putjuso, Ceram. Int. 44, 13267–13277 (2018)CrossRefGoogle Scholar
- 39.M. Newville, J. Synchrotron. Radiat. 8, 96–100 (2001)CrossRefGoogle Scholar
- 40.B. Ravel, M. Newville, J. Synchrotron. Radiat. 12, 537–541 (2005)CrossRefGoogle Scholar
- 41.S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, J. Alloy. Compd. 551, 456–462 (2013)CrossRefGoogle Scholar
- 42.B. Zhang, Q. Zhao, A. Chang, H. Ye, S. Chen, Y. Wu, Ceram. Int. 40, 11221–11227 (2014)CrossRefGoogle Scholar
- 43.X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloy. Compd. 708, 1026–1032 (2017)CrossRefGoogle Scholar
- 44.B. Zhang, Q. Zhao, A. Chang, Y. Wu, J. Alloy. Compd. 663, 474–479 (2016)CrossRefGoogle Scholar
- 45.W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, S. Maensiri, J. Alloy. Compd. 703, 139–147 (2017)CrossRefGoogle Scholar
- 46.Z. Weng, C. Wu, Z. Xiong, Y. Feng, H. AminiRastabi, C. Song, H. Xue, J. Eur. Ceram. Soc. 37, 4667–4672 (2017)CrossRefGoogle Scholar
- 47.B. Guo, P. Liu, X. Cui, Y. Song, Ceram. Int. 44, 12137–12143 (2018)CrossRefGoogle Scholar
- 48.J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Mater. Sci. Mater. Electron. 26, 2329–2337 (2015)CrossRefGoogle Scholar
- 49.P. Kum-onsa, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 35, 1441–1447 (2015)CrossRefGoogle Scholar
- 50.J. Shi, H. Fan, X. Liu, Y. Ma, Q. Li, J. Alloy. Compd. 627, 463–467 (2015)CrossRefGoogle Scholar
- 51.J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Ceram. Int. 43, 2705–2711 (2017)CrossRefGoogle Scholar
- 52.E. Jansen, W. Schäfer, G. Will, J. Appl. Crystallogr. 27, 492–496 (1994)CrossRefGoogle Scholar
- 53.M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)CrossRefGoogle Scholar
- 54.J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 34, 2941–2950 (2014)CrossRefGoogle Scholar
- 55.J. Jumpatam, A. Mooltang, B. Putasaeng, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, Ceram. Int. 42, 16287–16295 (2016)CrossRefGoogle Scholar
- 56.M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 232903 (2006)CrossRefGoogle Scholar
- 57.W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Mater. Des. 123, 15–23 (2017)CrossRefGoogle Scholar
- 58.A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (Wiley, New York, 2003), p. 310CrossRefGoogle Scholar
- 59.J. Zhao, C. Zhang, C. Hu, K. Lu, J. Eur. Ceram. Soc. 37, 3353–3359 (2017)CrossRefGoogle Scholar
- 60.T. Li, D. Liu, H. Dai, H. Xiang, Z. Chen, H. He, Z. Chen, J. Alloy. Compd. 599, 145–149 (2014)CrossRefGoogle Scholar
- 61.L. Ramajo, R. Parra, J.A. Varela, M.M. Reboredo, M.A. Ramírez, M.S. Castro, J. Alloy. Compd. 497, 349–353 (2010)CrossRefGoogle Scholar
- 62.S.-Y. Chung, J.-H. Choi, J.-K. Choi, Appl. Phys. Lett. 91, 091912 (2007)CrossRefGoogle Scholar
- 63.L.J. Liu, L. Fang, Y.M. Huang, Y.H. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, C.Z. Hu, J. Appl. Phys. 110, 094101 (2011)CrossRefGoogle Scholar
- 64.Y. Huang, L. Liu, D. Shi, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadi, Ceram. Int. 39, 6063–6068 (2013)CrossRefGoogle Scholar
- 65.Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci. Mater. Electron. 24, 1994–1999 (2013)CrossRefGoogle Scholar
- 66.L. Liu, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, L. Fang, C. Hu, J. Mater. Sci. 47, 2294–2299 (2012)CrossRefGoogle Scholar
- 67.G. Li, Z. Chen, X. Sun, L. Liu, L. Fang, B. Elouadi, Mater. Res. Bull. 65, 260–265 (2015)CrossRefGoogle Scholar
- 68.W. Somphan, P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 48, 4087–4092 (2013)CrossRefGoogle Scholar