Advertisement

One-step solvothermal synthesis and electrochemical properties of graphene-supported dendritic CoNi2S4 nanostructures

  • Jie Wang
  • Enping Zhang
  • Chengguan Yao
  • Yonghong NiEmail author
Article
  • 30 Downloads

Abstract

One of the main challenges for the high-performance energy storage device is to develop advanced electrode materials with a high energy density at a high power. In this study, a facile one-step route was designed for the synthesis of graphene-supported dendritic CoNi2S4 nanostructures constructed by abundant nanorods. The investigation showed that the introduction of graphene oxide (GO) could efficiently restrain the production of the impurity, α-NiS, and could affect the shape of CoNi2S4 and improve the electrochemical properties of CoNi2S4. When the reaction was carried out in the system containing the Ni2+/Co2+/GO mass ratio of 133/67/60, the as-prepared sample (labeled as CoNi2S4/rGO-60) exhibited the best electrochemical properties. At a current density of 1 A g−1, the specific capacitance reached 1224 F g−1; and at a high current density of 20 A g−1, the specific capacitance still achieved 768 F g−1, indicating the excellent rate capability of the as-obtained electrode. After 3000 cycle at a current density of 4 A g−1 in a three-electrode system, the specific capacitance of 81% was still kept, implying the good cycle stability. The enhanced electrochemical performance could be attributed to the synergistic effect between CoNi2S4 and rGO. Furthermore, the electrochemical performances of the asymmetric device assembled by CoNi2S4/rGO and activated carbon (AC) were also investigated.

Notes

Acknowledgements

The authors thank the National Natural Science Foundation of China (21571005), High School Leading talent incubation programme of Anhui province (gxbjZD2016010) and the Recruitment Program for Leading Talent Team of Anhui Province for the fund support.

References

  1. 1.
    H. Zhao, Q. Wu, S. Hu, H. Xu, C.N. Rasmussen, Appl. Energy 137, 545 (2015)CrossRefGoogle Scholar
  2. 2.
    S.W. Lee, B.M. Gallant, H.R. Byon, P.T. Hammond, Y. Shao-Horn, Energy Environ. Sci. 4, 1972 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Yao, Z. Hu, Y. Liu, P. Liu, Z. Ai, O. Rudolf, J. Alloy Compds. 648, 414 (2015)CrossRefGoogle Scholar
  4. 4.
    J.C. Deng, L.T. Kang, G.L. Bai, Y. Li, P.Y. Li, X.G. Liu, Y.Z. Yang, F. Gao, W. Liang, Electrochim. Acta 132, 127 (2014)CrossRefGoogle Scholar
  5. 5.
    E.R. Ezeigwe, P.S. Khiew, C.W. Siong, M.T.T. Tan, J. Alloy. Compd. 693, 1133 (2017)CrossRefGoogle Scholar
  6. 6.
    N.N. Xiang, Y.H. Ni, X. Ma, Chem. Asian. J. 10, 1972 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Li, S.L. Wang, L.P. Xin, M. Wu, X.J. Lou, J. Mater. Chem. A 4, 7700 (2016)CrossRefGoogle Scholar
  8. 8.
    Z.M. Zhang, Q. Wang, C.J. Zhao, S.D. Min, X.Z. Qian, ACS Appl. Mater. Interfaces 7, 4861 (2015)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Dai, X.X. Zang, J. Yang, C.C. Sun, W.L. Si, W. Huang, X.C. Dong, ACS Appl. Mater. Interfaces 7, 25396 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.B. Tan, M. Liang, P.L. Lou, Z.H. Cui, X.X. Guo, W.W. Sun, X.B. Yu, ACS Appl. Mater. Interfaces 8, 14488 (2016)CrossRefGoogle Scholar
  11. 11.
    F.F. Cao, M.T. Zhao, Y.F. Yu, B. Chen, Y. Huang, J. Yang, X.H. Cao, Q.P. Lu, X. Zhang, Z.C. Zhang, C.L. Tan, H. Zhang, J. Am. Chem. Soc. 138, 6924 (2016)CrossRefGoogle Scholar
  12. 12.
    E.P. Zhang, Y.H. Ni, RSC Adv. 6, 106465 (2016)CrossRefGoogle Scholar
  13. 13.
    H.C. Chen, J.J. Jiang, L. Zhang, H.Z. Wan, T. Qi, D.D. Xia, Nanoscale 5, 8879 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Gao, L.W. Mi, W.T. Wei, S.Z. Cui, Z. Zheng, H.W. Hou, W.H. Chen, ACS Appl. Mater. Interfaces 7, 4311 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.F. Zhang, M.Z. Ma, J. Yang, C.C. Sun, H.Q. Su, W. Huang, X.C. Dong, Nanoscale 6, 9824 (2014)CrossRefGoogle Scholar
  16. 16.
    W.D. He, C.G. Wang, H.Q. Li, X.L. Dong, X.J. Xu, T.Y. Zhai, Adv. Energy Mater. 7, 1700983 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Dai, D.W. Chang, J.B. Baek, W. Lu, Small 8, 1130 (2012)CrossRefGoogle Scholar
  18. 18.
    P. Liu, Y. Wei, L. Liu, K.L. Jiang, S.S. Fan, Nano Res. 5, 421 (2012)CrossRefGoogle Scholar
  19. 19.
    C. Merino, P. Soto, E. Vilaplana-Ortego, J.M. Gomez, F. Pico, J.M. Rojo, Carbon 43, 551 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18, 2073 (2006)CrossRefGoogle Scholar
  21. 21.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  22. 22.
    J.H. Shi, X.C. Li, G.H. He, L. Zhang, M. Li, J. Mater. Chem. A 3, 20619 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, X. Qian, J. Mater. Chem. A 2, 9613 (2014)CrossRefGoogle Scholar
  24. 24.
    C.J. Zhao, Y.X. Zhang, X.Z. Qian, Electrochim. Acta 198, 135 (2016)CrossRefGoogle Scholar
  25. 25.
    A.M. Wang, H.L. Wang, S.Y. Zhang, C.J. Mao, J.M. Song, H.L. Niu, B.K. Jin, Y.P. Tian, Appl. Surf. Sci. 282, 704 (2013)CrossRefGoogle Scholar
  26. 26.
    Q. Liu, J.T. Jin, J.Y. Zhang, ACS Appl. Mater. Interfaces 5, 5002 (2013)CrossRefGoogle Scholar
  27. 27.
    Z. Tang, C.H. Tang, H. Gong, Adv. Funct. Mater. 22, 1272 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Yu, Y. Hu, F. Qi, X.Q. Wang, B.J. Zheng, K. Liu, W.L. Zhang, Y.R. Li, Y.F. Chen, Electrochim. Acta 242, 25 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Shen, L. Huang, S. Liang, R. Liang, N. Qin, L. Wu, RSC Adv. 4, 2546 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Chen, Y. Zhang, M. Zhang, B.W. Yao, Y.R. Li, L. Huang, C. Li, G.Q. Shi, Chem. Sci. 7, 1874 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Wu, S. Li, B. Wang, J. Liu, M. Yu, Phys. Chem. Chem. Phys. 18, 4505 (2016)CrossRefGoogle Scholar
  32. 32.
    S.Y. Khoo, J. Miao, H.B. Yang, Z. He, K.C. Leong, B. Liu, T.T.Y. Tan, Adv. Mater. Interfaces 2, 1500384 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng, Z.H. Wang, ACS Sustain. Chem. Eng. 2, 809 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Wen, M.J. Fan, D.S. Yang, Y. Wang, H.L. Cheng, J.Q. Wang, J. Power Sources 320, 28 (2016)CrossRefGoogle Scholar
  35. 35.
    Y.X. Jin, J. Zhao, F. Li, W.P. Jia, D.X. Liang, H. Chen, R.R. Li, J.J. Hu, J.M. Ni, T.Q. Wu, D.P. Zhong, Electrochim. Acta 220, 83 (2016)CrossRefGoogle Scholar
  36. 36.
    J.Y. Ji, L.L. Zhang, H.X. Ji, Y. Li, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)CrossRefGoogle Scholar
  37. 37.
    A. Eftekhari, Sustainable Energy Fuels 1, 2053 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Eftekhari, M. Mohamedi, Mater. Today Energy 6, 211 (2017)CrossRefGoogle Scholar
  39. 39.
    G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, M.M. Yusoff, K.F. Chong, J. Solid State Electrochem. 18, 2505 (2014)CrossRefGoogle Scholar
  40. 40.
    K.K. Diao, Z. Xiao, Y.Y. Zhao, Mater. Chem. Phys. 162, 571 (2015)CrossRefGoogle Scholar
  41. 41.
    X.Q. Cai, X.P. Shen, L.B. Ma, Z.Y. Ji, L.R. kong, RSC Adv. 5, 58777 (2015)CrossRefGoogle Scholar
  42. 42.
    H.C. Chen, J.J. Jiang, L. Zhang, D.D. Xia, Y.D. Zhao, D.Q. Guo, T. Qi, H.Z. Wan, J. Power Sources 254, 249 (2014)CrossRefGoogle Scholar
  43. 43.
    S.G. Liu, C.P. Mao, Y.B. Niu, F.L. Yi, J.K. Hou, S.Y. Lu, J. Jiang, M.W. Xu, C.M. Li, ACS Appl. Mater. Interfaces 7, 25568 (2015)CrossRefGoogle Scholar
  44. 44.
    C.S. Dai, P.Y. Chien, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, T.W. Lin, ACS Appl. Mater. Interfaces 5, 12168 (2013)CrossRefGoogle Scholar
  45. 45.
    X.M. Li, Q. Li, Y. Wu, M.C. Rui, H.B. Zeng, ACS Appl. Mater. Interfaces 7, 19316 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Hua, S.J. Liu, Z.Y. Chen, R.Q. Bao, Y.Y. Shi, L.R. Hou, G. Pang, K.N. Hui, X.G. Zhang, C.Z. Yuan, Sci. Rep. 6, 20973 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jie Wang
    • 1
  • Enping Zhang
    • 1
  • Chengguan Yao
    • 1
  • Yonghong Ni
    • 1
    Email author
  1. 1.College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular SolidsAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations