Effect of A-site disorder of heavier rare earth ion on structural, magnetic and transport properties of lanthanum based chromium manganite perovskite system

  • Narayan Dutt Sharma
  • Arun Mahajan
  • Nisha Choudhary
  • Mukesh Kumar Verma
  • Suman Sharma
  • Devinder SinghEmail author


In order to study the effect of A-site cation mismatch on the structural, magnetic and transport properties, a systematic investigation of La0.6R0.1Ca0.3Mn0.9Cr0.1O3 (A = La, Eu and Ho) has been undertaken. Rietveld analysis of powder x-ray diffraction data revealed that all the compounds crystallize in the orthorhombic symmetry with Pbnm space group. Temperature dependent magnetization studies showed that all our investigated compounds exhibit a paramagnetic-ferromagnetic transition at low temperature with Curie temperature (Tc) decreases with decrease in average A-site ionic radius (<rA>). The materials show metal–semiconductor transition at low temperature and the values of metal–semiconductor transition temperature (TMS) are found to be much lower than Curie temperatutre (Tc). It has been concluded that the conduction mechanism was dominated by small polaron hopping model in the high temperature paramagnetic semiconducting region.



Authors are thankful to University Grants Commission, New Delhi for financial support vide Ref. No. 20/12/2015 (11) EU-V (Sr. No. 21215101B1). Authors are also thankful to Director, Advanced Materials Research Centre, IIT Mandi, for recording XRD. Thanks are also due to Prof. Ramesh Chandra, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, for recording EDX and SEM.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A. Banerjee, K. Kumar, P. Chaddah, J. Phys. Condens. Matter 20, 255245 (2008)CrossRefGoogle Scholar
  2. 2.
    A. Krichene, W. Boujelben, A. Cheikhrouhou, J. Alloys Compd. 550, 75–82 (2013)CrossRefGoogle Scholar
  3. 3.
    G.J. Liu, J.R. Sun, B.G. Shen, Solid State Commun. 149, 722–724 (2009)CrossRefGoogle Scholar
  4. 4.
    R.R. Doshi, P.S. Solanki, U. Khachar, D.G. Kuberkar, P.S.R. Krishna, A. Banerjee, P. Chaddah, Physica B 406, 4031–4034 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Damay, C. Martin, A. Maignon, B. Raveau, J. Appl. Phys. 81, 1372–1377 (1997)CrossRefGoogle Scholar
  6. 6.
    A. Mehri, W. Cheikh-RouhouKoubaa, M. Koubaa, A. Cheikh-Rouhou, Phys. Procedia 2, 975–982 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Ang, Y.P. Sun, X.B. Zhu, W.H. Song, Solid State Commun. 138, 505–510 (2006)CrossRefGoogle Scholar
  8. 8.
    W.W. Gao, J.R. Sun, X.Y. Lu, D.S. Shang, J. Wang, F.X. Hu, B.G. Shen, J. Appl. Phys. 109, 07C729 (2011)CrossRefGoogle Scholar
  9. 9.
    R.V. Helmholt, J. Wecher, B. Holzapfel, L. Schulz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)CrossRefGoogle Scholar
  10. 10.
    S. Jin, M. McCormack, H.T. Tiefel, R. Ramesh, J. Appl. Phys. 76, 6929 (1994)CrossRefGoogle Scholar
  11. 11.
    J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)CrossRefGoogle Scholar
  12. 12.
    P. Mandal, S. Das, Phys. Rev. B 56, 15073 (1997)CrossRefGoogle Scholar
  13. 13.
    P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)CrossRefGoogle Scholar
  14. 14.
    H. Kubo, N. Ohata, J. Phys. Soc. Jpn. 33, 21–32 (1972)CrossRefGoogle Scholar
  15. 15.
    C. Zener, Phys. Rev. 82, 403 (1951)CrossRefGoogle Scholar
  16. 16.
    S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413–415 (1994)CrossRefGoogle Scholar
  17. 17.
    G.J. Snyder, C.H. Booth, F. Bridges, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Phys. Rev. B 55, 6453 (1997)CrossRefGoogle Scholar
  18. 18.
    J. Hemberger, S. Lobina, H.A. Krug, N. von Nidda, V.Yu. Tristan, A.A. Ivanov, A.M. Mukhin, A. Balbashov, Loidl, Phys. Rev. B 70, 024414 (2004)CrossRefGoogle Scholar
  19. 19.
    O. Pena, A.B. Antunes, G. Martínez, V. Gil, C. Moure, J. Magn. Magn. Mater. 310, 159–168 (2007)CrossRefGoogle Scholar
  20. 20.
    H.S. Nair, R. Yadav, S. Adiga, S.S. Rao, J. Vantol, S. Elizabeth, Physica B 456, 108–114 (2015)CrossRefGoogle Scholar
  21. 21.
    R.R. Doshi, P.S. Solanki, U. Khachar, D.G. Kuberkar, P.S.R. Krishna, A. Banerjee, P. Chaddah, First order paramagnetic–ferromagnetic phase transition in Tb3+ doped La0.5Ca0.5MnO3 manganite. Physica B 406, 4031–4034 (2011)CrossRefGoogle Scholar
  22. 22.
    J.Q. Zhang, N. Li, M. Feng, B.C. Pan, H.B. Li, J. Alloys Compd. 467, 88–90 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Prasad, N.S. Gajbhiye, Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique. J. Alloys Compd. 265, 87–92 (1998)CrossRefGoogle Scholar
  24. 24.
    A.C. Larson, R.B.V. Dreele, Lab. Rep. LAUR 748, 86–748 (2004)Google Scholar
  25. 25.
    D. Singh, A. Mahajan, Ceram. Int. 41, 15048–15056 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Karppinen, A. Fukuoka, L. Niinistö, H. Yamauchi, Supercond. Sci. Technol. 9, 121–136 (1996)CrossRefGoogle Scholar
  27. 27.
    K. Cherif, J. Dhahri, E. Dhahri, M. Oumezzine, H. Vincent, J. Solid State Chem. 163, 466–471 (2002)CrossRefGoogle Scholar
  28. 28.
    D. Singh, A. Mahajan, J. Alloys Compd. 644, 172–179 (2015)CrossRefGoogle Scholar
  29. 29.
    D. Singh, A. Mahajan, Ceram. Int. 41, 11748–11755 (2015)CrossRefGoogle Scholar
  30. 30.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)CrossRefGoogle Scholar
  31. 31.
    P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B 56, 8265–8276 (1997)CrossRefGoogle Scholar
  32. 32.
    P.G. Radaelli, D.E. Cox, M. Marezio, S.W. Cheong, P.E. Schiffer, A.P. Ramirez, Phy. Rev. Lett. 75, 4488–4491 (1995)CrossRefGoogle Scholar
  33. 33.
    H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75, 914 (1995)CrossRefGoogle Scholar
  34. 34.
    C. Kittel, Introduction to Solid state Physics, 8th edn (Wiley, NewYork, 1986), pp. 404–406Google Scholar
  35. 35.
    S. Singh, D. Singh, J. Alloys Compd. 702, 249–257 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Singh, A. Mahajan, J. Solid State Chem. 207, 126–131 (2013)CrossRefGoogle Scholar
  37. 37.
    Y.K. Lakshmi, G. Venkataiah, M. Vithal, P.V. Reddy, Phys. B 403, 3059–3066 (2008)CrossRefGoogle Scholar
  38. 38.
    T. Shimura, T. Hayashi, Y. Inaguma, M. Itoh, J. Solid State Chem. 124, 250–263 (1996)CrossRefGoogle Scholar
  39. 39.
    S. Bhattacharya, S. Pal, A. Banerjee, H.D. Yang, B.K. Chaudhuri, J. Chem. Phys. 119, 3972–3982 (2003)CrossRefGoogle Scholar
  40. 40.
    L. Malavasi, M.C. Mozzati, C.B. Azzoni, G. Chiodelli, G. Flor, Solid State Commun. 123, 321–326 (2002)CrossRefGoogle Scholar
  41. 41.
    S. Bhattacharya, R.K. Mukherjee, B.K. Chaudhuri, H.D. Yang, Appl. Phys. Lett. 82, 4101–4103 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Narayan Dutt Sharma
    • 1
  • Arun Mahajan
    • 1
  • Nisha Choudhary
    • 1
  • Mukesh Kumar Verma
    • 1
  • Suman Sharma
    • 1
  • Devinder Singh
    • 1
  1. 1.Department of ChemistryUniversity of JammuJammuIndia

Personalised recommendations