Advertisement

Thermal decomposition followed by acid etching to synthesize Fe3O4@C for lithium storage

  • Denghu WeiEmail author
  • Ranran Jiao
  • Leilei Xu
  • Xianling Cong
  • Shuangshuang Wang
  • Wenzhi Li
  • Xuquan Tao
  • Xiang Gao
  • Suyuan ZengEmail author
Article
  • 60 Downloads

Abstract

Carbon-composited ferroferric oxide (Fe3O4@C-1) was synthesized through a thermal decomposition of the chelate (Fe)2(C4H4O6)3, which can be served as the sources for both Fe3O4 and carbon. After etching in hydrochloric acid (HCl) solution for 20 min, the pyrolytic Fe3O4@C-1 turned into Fe3O4@C-2 gaining a higher specific surface area and a better electrochemical performance. As anode materials for lithium-ion batteries, the Fe3O4@C-2 sample delivers a reversible capacity of 1047 mAh g−1 at a current density of 200 mA g−1 and remains the capacity at 837 mAh g−1 after 200 cycles, while the capacity of the Fe3O4@C-1 electrode fades to only 94 mAh g−1 after 200 cycles.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shandong Province (ZR2017QB017), the Natural Science Foundation of Shandong Province (ZR2016BQ41), the Ph.D. Scientific Research Fund of Liaocheng University (No. 318051406), the National Natural Science Foundation of China (51603098), and the Natural Science Foundation of Liaocheng University (318011603).

References

  1. 1.
    S.H. Lee, S.H. Yu, J.E. Lee, A. Jin, D.J. Lee, N. Lee, H. Jo, K. Shin, T.Y. Ahn, Y.W. Kim, H. Choe, Y.E. Sung, T. Hyeon, Nano Lett. 13, 4249–4256 (2013)CrossRefGoogle Scholar
  2. 2.
    W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, Adv. Funct. Mater. 18, 3941–3946 (2008)CrossRefGoogle Scholar
  3. 3.
    L. Yang, H.S. Chen, H.Q. Jiang, Y.J. Wei, W.L. Song, D.N. Fang, Chem. Commun. 54, 3997–4000 (2018)CrossRefGoogle Scholar
  4. 4.
    Y.S. Hong, N. Li, H.S. Chen, P. Wang, W.L. Song, D.N. Fang, Energy Storage Mater. 11, 118–126 (2018)CrossRefGoogle Scholar
  5. 5.
    G.M. Zhou, D.W. Wang, F. Li, L.L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Chem. Mater. 22, 5306–5313 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Suo, Q. Zhao, J. Meng, J. Li, X. Zheng, X. Guan, Y. Liu, J. Zhang, Mater. Lett. 174, 36–39 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Du, C. Xu, J. Liu, Y. Lan, P. Chen, Nanoscale 9, 14376–14384 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Yao, Z. Yang, C. Qi, Y. Li, T. Cai, T. Ren, ChemElectroChem 4, 1–7 (2017)CrossRefGoogle Scholar
  9. 9.
    Q. Zhao, J. Liu, Y. Wang, W. Tian, J. Liu, J. Zang, H. Ning, C. Yang, M. Wu, Electrochim. Acta 262, 233–240 (2018)CrossRefGoogle Scholar
  10. 10.
    Z.M. Liu, X.Y. Yu, U. Paik, Adv. Energy Mater. 6, 1502318 (2016)CrossRefGoogle Scholar
  11. 11.
    X. Li, Y. Zhu, X. Zhang, J. Liang, Y. Qian, RSC Adv. 3, 10001–10006 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Wei, Z. Xu, J. Wang, Y. Sun, S. Zeng, W. Li, X. Li, J. Alloys Compd. 714, 13–19 (2017)CrossRefGoogle Scholar
  13. 13.
    C.H. Chen, J. Liu, K. Amine, J. Power Sources 96, 321–328 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Denghu Wei
    • 1
    Email author
  • Ranran Jiao
    • 2
  • Leilei Xu
    • 1
  • Xianling Cong
    • 1
  • Shuangshuang Wang
    • 1
  • Wenzhi Li
    • 1
  • Xuquan Tao
    • 1
  • Xiang Gao
    • 1
  • Suyuan Zeng
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China
  2. 2.Department of ChemistryLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations