A study on graphene/tin oxide performance as negative electrode compound for lithium battery application

  • Atef Y. ShenoudaEmail author
  • Anton A. Momchilov


A novel negative (anode) material for lithium-ion batteries, tin oxide particles covered with graphene (SnO/graphene) prepared from graphite was fabricated by hydrothermal synthesis. The structure and morphology of the composite were characterized by Raman spectra, FTIR spectra, XRD, XPS and FESEM. It is observed that the G and 2D bands (1581 and 2831 cm−1, respectively) have more intensity in graphene rather than graphite. EIS was carried out. It is observed that the lowest Warburg impedance coefficient, σw, is 24.39 Ω s0.5 for Li/SnO–graphene (3:1) cell. The reversible specific capacity of Li/SnO–graphene (3:1) cell was about 0.950 Ah g−1 after 100 cycles at current density current 10−2 A g−1. These results indicate that 3 SnO:1 graphene possesses superior cycle performance and high rate capability. The enhanced electrochemical performances can be ascribed to the characteristic structure of tin oxide with graphene shells, which buffer the volume change of the metallic tin and prevent the detachment and agglomeration of pulverized tin.



The authors would like to thank Academy of Scientific Research and Technology (ASRT) for financial support of this work through the joint project of Egypt-Bulgaria cooperation agreement.


  1. 1.
    M.H. Liang, L.J. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19, 5871–5878 (2009)CrossRefGoogle Scholar
  2. 2.
    S.M. Paek, E.J. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72–75 (2009)CrossRefGoogle Scholar
  3. 3.
    A.Y. Shenouda, H.K. Liu, Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems. J. Power Sources 185, 1386–1391 (2008)CrossRefGoogle Scholar
  4. 4.
    A.Y. Shenouda, H.K. Liu, Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Compd. 477, 498–503 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion. Batteries Chem. Rev. 113, 5364–5457 (2013)Google Scholar
  6. 6.
    J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem. C 113, 20504–20508 (2009)CrossRefGoogle Scholar
  7. 7.
    W. Yue, S. Yang, Y. Ren, X. Yang, In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries. Electrochim. Acta 92, 412–420 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, M. Wu, Z. Jiao, J.Y. Lee, Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 21, 3210–3215 (2009)CrossRefGoogle Scholar
  9. 9.
    X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRefGoogle Scholar
  10. 10.
    S.J. Han, B.C. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 15, 1845–1850 (2005)CrossRefGoogle Scholar
  11. 11.
    G. Wu, M. Wu, D. Wang, L. Yin, J. Ye, S. Deng, Z. Zhu, W. Ye Guiliang, Z. Li, A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries. Appl. Surf. Sci. 315, 400–406 (2014)CrossRefGoogle Scholar
  12. 12.
    L.Y. Jiang, X.L. Wu, Y.G. Guo, L.J. Wan, SnO2-based hierarchical nano microstructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J. Phys. Chem. C 113, 14213–14219 (2009)CrossRefGoogle Scholar
  13. 13.
    M.S. Park, Y.M. Kang, S.X. Dou, H.K. Liu, Reduction-free synthesis of carbon-encapsulated SnO2 nanowires and their superiority in electrochemical performance. J. Phys. Chem. C 112, 11286–11289 (2008)CrossRefGoogle Scholar
  14. 14.
    X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 20, 6562–6566 (2008)CrossRefGoogle Scholar
  15. 15.
    M.S. Parka, Y.M. Kang, J.H. Kima, G.X. Wang, S.X. Dou, H.K. Liu, Effects of low-temperature carbon encapsulation on the electrochemical performance of SnO2 nanopowders. Carbon 46, 35–40 (2008)CrossRefGoogle Scholar
  16. 16.
    X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868–2874 (2009)CrossRefGoogle Scholar
  17. 17.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films. Science 30, 6666–6669 (2004)Google Scholar
  18. 18.
    F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, C.N. Lau, Phase-coherent transport in graphene quantum billiards. Science 317, 1530–15333 (2007)CrossRefGoogle Scholar
  19. 19.
    N.M.R. Peres, A.H. Castro Neto, F. Guinea, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411–125419 (2006)CrossRefGoogle Scholar
  20. 20.
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, Superior thermal conductivity of single-layer grapheme. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  21. 21.
    B.J. Li, H.Q. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21, 3346–3349 (2011)CrossRefGoogle Scholar
  22. 22.
    Q. Guo, Z. Zheng, H. Gao, J. Ma, X. Qin, SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J. Power Sources 240, 149–154 (2013)CrossRefGoogle Scholar
  23. 23.
    G.D. Jiang, Z.F. Lin, C. Chen, L.H. Zhu, Q. Chang, N. Wang, W. Wei, H.Q. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)CrossRefGoogle Scholar
  24. 24.
    X. Liu, M. Wu, M. Li, X. Pan, J. Chen, X. Bao, Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. J. Mater. Chem. A 1, 9527–9535 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yan, Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 23, 3570–3576 (2013)CrossRefGoogle Scholar
  26. 26.
    Y.G. Zhu, Y. Wang, J. Xie, G.S. Cao, T.-J. Zhu, X. Zhao, H.Y. Yang, Effects of graphene oxide function groups on SnO2/graphene nanocomposites for lithium storage application. Electrochim. Acta 154, 338–344 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Su, Y. Chia, M.T. Tan, P.S. Khiew, J.K. Chin, H. Lee, D.C.S. Bien, A.S. Teh, C.W. Siong, Facile synthesis of few-layer graphene by mild solvent thermal exfoliation of highly oriented pyrolytic graphite. Chem. Eng. J. 231, 1–11 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Hodkiewicz, Characterizing Graphene with Raman Spectroscopy (Thermo Fisher Scientific, Madison, 2010)Google Scholar
  29. 29.
    X. Fu, X. Song, Y. Zhang, Facile preparation of graphene sheets from synthetic graphite. Mater. Lett. 70, 181–184 (2012)CrossRefGoogle Scholar
  30. 30.
    M.Z. Iqbal, F. Wang, H. Zhao, M.Y. Rafique, J. Wang, Q. Li, Structural and electrochemical properties of SnO nanoflowers as an anode material for lithium ion batteries. Scripta Mater. 67, 665–668 (2012)CrossRefGoogle Scholar
  31. 31.
    K. Satheesh, R. Jayave, Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Mater. Lett. 113, 5–8 (2013)CrossRefGoogle Scholar
  32. 32.
    P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, H. Wang, Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim. Acta 116, 103–110 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Aziz, S.S. Abbas, W.R. Baharom, W. Zuraidah, W. Mahmud, Structure of SnO2 nanoparticles by sol–gel method. Mater. Lett. 74, 62–64 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Geng, S.J. Wang, J.-K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 336, 592–598 (2009)CrossRefGoogle Scholar
  35. 35.
    H.C. Schniepp, J. Li, M.J. Mcallister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)CrossRefGoogle Scholar
  36. 36.
    A.Y. Shenouda, H.K. Liu, Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J. Electrochem. Soc. 157, A1183–A1187 (2010)CrossRefGoogle Scholar
  37. 37.
    X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruof, Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous co-precipitation. J. Power Sources 196, 6473–6477 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Central Metallurgical Research and Development Institute (CMRDI)HelwanEgypt
  2. 2.Institute of Electrochemistry and Energy Systems (IEES)SofiaBulgaria

Personalised recommendations