Facile synthesis of SiO2/C anode using PVC as carbon source for lithium-ion batteries

  • Jian Li
  • Shengliang Yang
  • Hongming ZhouEmail author
  • Lihua Wang
  • Zhaohui Yang
  • Pengyu Meng
  • Leshan Hu
  • Rong Hu


SiO2/C composites using polyvinyl chloride (PVC) as carbon sources are prepared successfully via a facile and low-cost approach. In this paper, the effect of four coating ratios on the SiO2/C materials is investigated. When tested as an anode material for lithium-ion batteries, the samples possessing a high carbon content display a better electrochemical stability. The high-content PVC pyrolytic carbon can provide a malleable and high electrical conductivity carbon layer for SiO2, which has more defects and benefits the diffusion of Li ions between the electrolyte and SiO2/C. However, considering the low capacity of the PVC pyrolytic carbon, a carbon content of 25% was chosen as the best coating ratio. This SiO2/C electrode shows a reversible capacity of 695 mAh g−1 at a current density of 100 mA g−1 after 200 cycles, with a capacity retention of 86.4% after the first cycle. The electrode also displays a discharge capacity of 535 mAh g−1 at a current density of 1 A g−1. Taking into consideration the facileness and the low cost of the synthetic method, this SiO2/C composite anode material may have a great prospect of industrialization.



This study was funded by "Natural Science Foundation of Jilin Province (51371198) and Natural Science Foundation of Hunan province (2017JJ2168).


  1. 1.
    J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135(4), 1167 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Armand, J.M. Tarascon, Nature 451(7179), 652 (2008)CrossRefGoogle Scholar
  3. 3.
    R.C. Ambare, R.S. Mane, B.J. Lokhande, Int. J. Adv. Res. 3, 1943 (2016)Google Scholar
  4. 4.
    L. Ji, X. Zhang, Carbon 47(14), 3219 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Zhang, C. Zhang, Z. Liu, J. Zheng, Y. Zuo, C. Xue, C. Li, B. Cheng, J. Power Sources 339, 86 (2017)CrossRefGoogle Scholar
  6. 6.
    M.N. Obrovac, L.J. Krause, J. Electrochem. Soc. 154(2), A103 (2007)CrossRefGoogle Scholar
  7. 7.
    N. Fukata, M. Mitome, Y. Bando, W. Wu, Z.L. Wang, Nano Energy 26, 37 (2016)CrossRefGoogle Scholar
  8. 8.
    K. Xiao, Q. Tang, Z. Liu, A. Hu, S. Zhang, W. Deng, X. Chen, Ceram. Int. 44(4), 3548 (2017)CrossRefGoogle Scholar
  9. 9.
    Z.S. Wen, J. Yang, B.F. Wang, K. Wang, Y. Liu, Electrochem. Commun. 5(2), 165 (2003)CrossRefGoogle Scholar
  10. 10.
    X. Zuo, J. Zhu, P. Müller-Buschbaum, Y. Cheng, Nano Energy 31, 113 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Chen, J. Wu, Q. Zhang, X. Su, J. Power Sources 363, 126 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Yao, J. Zhang, L. Xue, T. Huang, A. Yu, J. Power Sources 196(23), 10240 (2011)CrossRefGoogle Scholar
  13. 13.
    W.S. Chang, C.M. Park, J.H. Kim, Y.U. Kim, G. Jeong, H.J. Sohn, Energy Environ. Sci. 5(5), 6895 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Wang, J. Xue, B. Gao, P. Gao, C. Mou, J. Li, RSC Adv. 4(110), 64744 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Lener, A.A. Garcia-Blanco, O. Furlong, M. Nazzarro, K. Sapag, D.E. Barraco, E.P.M. Leiva, Electrochim. Acta 279, 289 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, Z. Tian, R. Fan, S. Zhao, R. Zhou, H. Guo, Z. Wang, Powder Technol. 284, 365 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Wang, N. Zhao, C. Shi, E. Liu, C. He, F. He, L. Ma, Appl. Surf. Sci. 433, 428 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Gu, X. Xia, C. Liu, X. Hu, Y. Chen, Z. Wang, H. Liu, J. Alloys Compd. 757, 265 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Xia, Z. Yin, F. Zheng, Y. Zhang, Mater. Lett. 205, 83 (2017)CrossRefGoogle Scholar
  20. 20.
    D. Nan, J.G. Wang, Z.H. Huang, L. Wang, W. Shen, F. Kang, Electrochem. Commun. 34(9), 52 (2013)CrossRefGoogle Scholar
  21. 21.
    W.R. Liu, Y.C. Yen, H.C. Wu, M. Winter, N.L. Wu, J. Appl. Electrochem. 39(9), 1643 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Jiang, D. Mu, S. Chen, B. Wu, Z. Zhao, Y. Wu, Z. Ding, F. Wu, J. Alloys Compd. 744, 7 (2018)CrossRefGoogle Scholar
  23. 23.
    H.Y. Lee, J.K. Baek, S.W. Jang, S.M. Lee, S.T. Hong, K.Y. Lee, M.H. Kim, J. Power Sources 101(2), 206 (2001)CrossRefGoogle Scholar
  24. 24.
    H. Aso, K. Matsuoka, A. Sharma, A. Tomita, Carbon 42(14), 2963 (2004)CrossRefGoogle Scholar
  25. 25.
    F. Albertúsa, A. Llerena, J. Alpízar, V. Cerdá, M. Luque, A. Ríos, M. Valcárcel, Anal. Chim. Acta 355(1), 23 (1997)CrossRefGoogle Scholar
  26. 26.
    H.L. Zhang, F. Li, C. Liu, H.M. Cheng, J. Phys. Chem. C 112(20), 7767 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Bai, Z. Wang, C. Wu, R. Xu, F. Wu, Y. Liu, H. Li, Y. Li, J. Lu, K. Amine, ACS Appl. Mater. Interfaces 7(9), 5598 (2015)CrossRefGoogle Scholar
  28. 28.
    Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, J. Power Sources 195(6), 1720 (2010)CrossRefGoogle Scholar
  29. 29.
    S.J. Park, Y.J. Kim, H. Lee, J. Power Sources 196(11), 5133 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Li, H. Zhou, Chem. Commun. 48(9), 1201 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Castro, D. Soares, C. Vilarinho, F. Castro, Waste Manag. 32(5), 847 (2012)CrossRefGoogle Scholar
  32. 32.
    X. Wu, Z. Shi, C. Wang, J. Jin, J. Electroanal. Chem. 746, 62 (2015)CrossRefGoogle Scholar
  33. 33.
    X. Ma, Z. Wei, H. Han, X. Wang, K. Cui, L. Yang, Chem. Eng. J. 323(1), 252 (2018)Google Scholar
  34. 34.
    L. Yin, M. Wu, Y. Li, G. Wu. Y. Wang, Y. Wang, New Carbon Mater. 32(4), 311 (2017)CrossRefGoogle Scholar
  35. 35.
    B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Curr. Appl. Phys. 13, 985 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Ren, M. Li, J. Power Sources 306, 459 (2016)CrossRefGoogle Scholar
  37. 37.
    Y. Hyun, J.Y. Choi, H.K. Park, J. Young Bae, C.S. Lee, Mater. Res. Bull. 82(1), 92 (2016)CrossRefGoogle Scholar
  38. 38.
    H. Wu, Y. Cui, Nano Today 7(5), 414 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Nara, T. Yokoshima, T. Momma, T. Osaka, Energy Environ. Sci. 5, 6500 (2012)CrossRefGoogle Scholar
  40. 40.
    H. Nara, T. Yokoshima, M. Otaki, T. Momma, T. Osaka, Electrochim. Acta 110, 403 (2013)CrossRefGoogle Scholar
  41. 41.
    L. Zhang, K. Shen, W. He, Y. Liu, S. Guo, Int. J. Electrochem. Sci. 12, 10221 (2017)CrossRefGoogle Scholar
  42. 42.
    X. Liu, Y. Chen, H. Liu, Z.Q. Liu, J. Mater. Sci. Technol. 33(3), 239 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Ju, J.A. Tang, K. Zhu, Y. Meng, C. Wang, G. Chen, Y. Wei, Y. Gao, Electrochim. Acta 191, 411 (2016)CrossRefGoogle Scholar
  44. 44.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Appl. Surf. Sci. 349, 887 (2015)CrossRefGoogle Scholar
  45. 45.
    R.C. Ambare, P. Shinde, U.T. Nakate, B.J. Lokhande, R.S. Mane, Appl. Surf. Sci. 453, 214 (2018)CrossRefGoogle Scholar
  46. 46.
    M. Zhou, F. Pu, Z. Wang, T. Cai, H. Chen, H. Zhang, S. Guan, Phys. Chem. Chem. Phys. 15(27), 11394 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Hunan Zhengyuan Institute for Energy Storage Materials and DevicesChangshaChina

Personalised recommendations