Effect of γ-radiation on structural, morphological, magnetic and dielectric properties of Zn–Cr substituted nickel ferrite nanoparticles

  • Vishwanath K. Mande
  • Jitendra S. Kounsalye
  • S. K. Vyawahare
  • K. M. JadhavEmail author


In the present work nano-sized zinc and chromium substituted simultaneously in nickel ferrites Ni1−xZnxFe2−xCrxO4, (Ni–Zn–Cr) nanoparticles with x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 were successfully synthesized through a sol–gel auto-combustion technique using citric acid as a fuel. All the prepared samples have been irradiated by γ-rays of 60Co source with 7 Mrad at a dose rate of 0.1 Mrad/h to investigate the irradiation effect on the structural, morphological, magnetic and dielectric properties of all the prepared samples. Ni–Zn–Cr nanoparticles were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) to study their structural and morphological changes. The magnetic properties were studied by vibrating sample magnetometer (VSM) at room temperature before and after irradiation. XRD patterns confirm the formation of pure mono-phase of a cubic spinel structure for all the prepared samples. The two prominent absorption bands in FT-IR spectra also confirm the formation of the spinel structure. The FE-SEM image of un-irradiated samples show agglomerated and almost spherical shape particles morphology; while γ-irradiated samples show some scratched morphology. Dielectric constant and dielectric loss tangent decreases with an increasing zinc and chromium concentration of the unirradiated and after γ-irradiated. Overall; the structural, morphological, magnetic and dielectric properties of the present samples were significantly altered after γ-irradiation. Therefore, low dielectric constant and dielectric loss tangent is attractive due to its potential in device applications.



The author VKM would like to thank, The Government Institute of Science, Aurangabad, (M.H.) India, for providing gamma radiation facility.


  1. 1.
    W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134, 14658–14661 (2012)CrossRefGoogle Scholar
  2. 2.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)CrossRefGoogle Scholar
  4. 4.
    A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Sattar, H. El-Sayed, I. ALsuqia, Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J. Magn. Magn. Mater. 395, 89–96 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Karimi, P. Kameli, H. Ahmadvand, H. Salamati, Effects of Zn–Cr-substitution on the structural and magnetic properties of Ni1– xZnxFe2– xCrxO4 ferrites. Ceram. Int. 42, 16948–16955 (2016)CrossRefGoogle Scholar
  7. 7.
    M.A. Gabal, Y. Al Angari, Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phys. 115, 578–584 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Gabal, R.M. El-Shishtawy, Y. Al Angari, Structural and magnetic properties of nano-crystalline Ni–Zn ferrites synthesized using egg-white precursor. J. Magn. Magn. Mater. 324, 2258–2264 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Ghasemi, M. Mousavinia, Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol–gel method. Ceram. Int. 40, 2825–2834 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Amer, A. Tawfik, A. Mostafa, A. El-Shora, S. Zaki, Spectral studies of Co substituted Ni–Zn ferrites. J. Magn. Magn. Mater. 323, 1445–1452 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Muralidharan, V. Saraswathy, L.J. Berchmans, K. Thangavel, K.Y. Ann, Nickel ferrite (NiFe2O4): a possible candidate material as reference electrode for corrosion monitoring of steel in concrete environments. Sens. Actuators B 145, 225–231 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Gunjakar, A. More, K. Gurav, C. Lokhande, Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Appl. Surf. Sci. 254, 5844–5848 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2 – xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earth 35, 374–381 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Jalaly, M. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1 – xZnxFe2O4 ferrite. Phys. B 405, 507–512 (2010)CrossRefGoogle Scholar
  15. 15.
    E. Pervaiz, I. Gul, High frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: a novel electromagnetic material. J. Magn. Magn. Mater. 349, 27–34 (2014)CrossRefGoogle Scholar
  16. 16.
    L.-Z. Li, X.-Q. Tu, R. Wang, L. Peng, Structural and magnetic properties of Cr-substituted NiZnCo ferrite nanopowders. J. Magn. Magn. Mater. 381, 328–331 (2015)CrossRefGoogle Scholar
  17. 17.
    T.S. Saraf, J.S. Kounsalye, S.D. Birajdar, N. Shamkuwar, Nd: YAG laser irradiation effects on structural and magnetic properties of Ni1+ xZrxFe2–2xO4 nanoparticles. Radiat. Phys. Chem. 146, 96–104 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016)Google Scholar
  19. 19.
    R.B. Borade, S.E. Shirsath, G. Vats, A.S. Gaikwad, S.M. Patange, S.B. Kadam, R.H. Kadam, A.B. Kadam, Polycrystalline to preferred-(100) single crystal texture phase transformation of yttrium iron garnet nanoparticles. Nanoscale Adv. (2018). Google Scholar
  20. 20.
    S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, S. Maensiri, Nanocrystalline spinel ferrite (MFe2O4, M=Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater. Res. Bull. 48, 2060–2065 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor. J. Mater. Sci.: Mater. Electron. 26, 3813–3818 (2015)Google Scholar
  23. 23.
    T. Marinca, I. Chicinaş, O. Isnard, V. Pop, F. Popa, Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite-NiFe2O4 obtained by reactive milling. J. Alloy. Compd. 509, 7931–7936 (2011)CrossRefGoogle Scholar
  24. 24.
    N. Chaudhari, R. Kambale, D. Bhosale, S. Suryavanshi, S. Sawant, Thermal hysteresis and domain states in Ni–Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322, 1999–2005 (2010)CrossRefGoogle Scholar
  25. 25.
    M.A. Dar, J. Shah, W. Siddiqui, R. Kotnala, Study of structure and magnetic properties of Ni–Zn ferrite nano-particles synthesized via co-precipitation and reverse micro-emulsion technique. Appl. Nanosci. 4, 675–682 (2014)CrossRefGoogle Scholar
  26. 26.
    D.A. Dupree, T. Nguyen, D. Panescu, J.G. Whayne, D. McGee, D.K. Swanson, Interactive systems and methods for controlling the use of diagnostic or therapeutic instruments in interior body regions, in, Google Patents (2004)Google Scholar
  27. 27.
    D. Baker, S. Kanekal, V. Hoxie, S. Batiste, M. Bolton, X. Li, S. Elkington, S. Monk, R. Reukauf, S. Steg, The relativistic electron-proton telescope (rept) instrument on board the radiation belt storm probes (rbsp) spacecraft: characterization of earth’s radiation belt high-energy particle populations, in The Van Allen Probes Mission (Springer, 2012), pp. 337–381Google Scholar
  28. 28.
    N. Okasha, S. El Dek, M. Abdelmaksoud, D.N. Ghaffar, Enhanced structure and magnetic properties of doped nanomagnetite by γ-irradiation. J. Alloy. Compd. 737, 356–364 (2018)CrossRefGoogle Scholar
  29. 29.
    R. Lisha, T. Hysen, P. Geetha, P. Aravind, M. Shareef, A. Shamlath, S. Ojha, R. Ramanujan, M. Anantharaman, Defect induced enhancement of exchange bias by swift heavy ion irradiation in zinc ferrite–FeNiMoB alloy based bilayer films. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 360, 68–74 (2015)CrossRefGoogle Scholar
  30. 30.
    T.-R. Kuo, V.A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, C.-C. Chen, Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation. J. Am. Chem. Soc. 132, 14163–14171 (2010)CrossRefGoogle Scholar
  31. 31.
    I. Hamada, X-ray diffraction and IR absorption in the system Co0. 6Zn0. 4MnxFe2– xO4 before and after γ-irradiation. J. Magn. Magn. Mater. 271, 318–325 (2004)CrossRefGoogle Scholar
  32. 32.
    M.L. Mane, R. Sundar, K. Ranganathan, S. Oak, K. Jadhav, Effects of Nd: YAG laser irradiation on structural and magnetic properties of Li0. 5Fe2. 5O4. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 269, 466–471 (2011)CrossRefGoogle Scholar
  33. 33.
    V.J. Angadi, A. Anupama, R. Kumar, H. Somashekarappa, S. Matteppanavar, B. Rudraswamy, B. Sahoo, Dose dependent modifications in structural and magnetic properties of γ-irradiated nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics. Ceram. Int. 43, 523–526 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Karim, S.E. Shirsath, S. Shukla, K. Jadhav, Gamma irradiation induced damage creation on the cation distribution, structural and magnetic properties in Ni–Zn ferrite. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 268 2706–2711 (2010)CrossRefGoogle Scholar
  35. 35.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M=Mn, Co, Ni). J. Phys. Chem. C 113, 8606–8615 (2009)CrossRefGoogle Scholar
  36. 36.
    V.K. Mande, D.N. Bhoyar, S. Vyawahare, K. Jadhav, Effect of Zn2+–Cr3+ substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 29, 15259–15270 (2018)Google Scholar
  37. 37.
    A. Hussain, T. Abbas, S.B. Niazi, Preparation of Ni1 – xMnxFe2O4 ferrites by sol–gel method and study of their cation distribution. Ceram. Int. 39, 1221–1225 (2013)CrossRefGoogle Scholar
  38. 38.
    M. Kooti, A.N. Sedeh, Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J. Mater. Sci. Technol. 29, 34–38 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Veena, A. Somashekarappa, G. Shankaramurthy, H. Jayanna, H. Somashekarappa, Effect of 60Co gamma irradiation on dielectric and complex impedance properties of Dy3+ substituted Ni–Zn nanoferrites. J. Magn. Magn. Mater. 419, 375–385 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Birajdar, S.E. Shirsath, R. Kadam, S. Patange, D. Mane, A. Shitre, Frequency and temperature dependent electrical properties of Ni0. 7Zn0.3CrxFe2–xO4 (0 ≤ x ≤ 0.5). Ceram. Int. 38, 2963–2970 (2012)CrossRefGoogle Scholar
  41. 41.
    J.S. Kounsalye, P.B. Kharat, M.V. Shisode, K. Jadhav, Influence of Ti4+ ion substitution on structural, electrical and dielectric properties of Li0. 5Fe2. 5O4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 17254–17261 (2017)Google Scholar
  42. 42.
    M. Mantina, A.C. Chamberlin, R. Valero, C.J. Cramer, D.G. Truhlar, Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Khairy, Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth. Met. 189, 34–41 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2 – xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015)Google Scholar
  45. 45.
    A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite. J. Mol. Struct. 1139, 430–435 (2017)CrossRefGoogle Scholar
  46. 46.
    M. George, A.M. John, S.S. Nair, P. Joy, M. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006)CrossRefGoogle Scholar
  47. 47.
    P. Hankare, U. Sankpal, R. Patil, I. Mulla, R. Sasikala, A. Tripathi, K. Garadkar, Synthesis and characterization of nanocrystalline zinc substituted nickel ferrites. J. Alloy. Compd. 496, 256–260 (2010)CrossRefGoogle Scholar
  48. 48.
    G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)CrossRefGoogle Scholar
  49. 49.
    K.C.B. Naidu, W. Madhuri, Microwave processed NiMg ferrite: studies on structural and magnetic properties. J. Magn. Magn. Mater. 420, 109–116 (2016)CrossRefGoogle Scholar
  50. 50.
    R. Kambale, K. Song, Y. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 053910 (2011)CrossRefGoogle Scholar
  51. 51.
    V. Sunny, P. Kurian, P. Mohanan, P. Joy, M. Anantharaman, A flexible microwave absorber based on nickel ferrite nanocomposite. J. Alloy. Compd. 489, 297–303 (2010)CrossRefGoogle Scholar
  52. 52.
    M. Mallapur, P. Shaikh, R. Kambale, H. Jamadar, P. Mahamuni, B. Chougule, Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. J. Alloy. Compd. 479, 797–802 (2009)CrossRefGoogle Scholar
  53. 53.
    N. Chandamma, S. Kumar, G. Shankarmurthy, E. Melagiriyappa, K. Nagaraja, Effect of gamma irradiation on some electrical and dielectric properties of Ce3+ substituted Ni–Zn nano ferrites. Chin. J. Phys. 55, 1729–1738 (2017)CrossRefGoogle Scholar
  54. 54.
    F. Rogti, M. Ferhat, Maxwell–Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers. J. Electrostat. 72, 91–97 (2014)CrossRefGoogle Scholar
  55. 55.
    R. Ali, A. Mahmood, M.A. Khan, A.H. Chughtai, M. Shahid, I. Shakir, M.F. Warsi, Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloy. Compd. 584, 363–368 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Department of Physics and Research CenterDeogiri CollegeAurangabadIndia

Personalised recommendations