Advertisement

Photosensitization of optical band gap modified polyvinyl alcohol films with hybrid AgAlO2 nanoparticles

  • T. E. Somesh
  • Murad Q. A. Al-Gunaid
  • B. S. Madhukar
  • SiddaramaiahEmail author
Article
  • 42 Downloads

Abstract

Silver doped aluminium oxide (AgAlO2) nanoparticles (NPs) have been synthesized by sol gel combustion method. The size and morphology of the synthesized NPs have been confirmed by high-resolution transition electron microscopy (HRTEM), and results indicate the size of the particles is around 8–14 nm with spherical in shape. A series of polyvinyl alcohol (PVA) nanocomposites (NCs) have been fabricated with varying amounts viz., 0.5, 1.0, 1.5, 2.0 and 2.5 wt% of AgAlO2 NPs using solvent intercalation technique. The intensity of crystalline peaks of NC films was reduced, and a slight shift in the peak position was observed in XRD profiles, which depicts the changes in microcrystalline behaviors of the NCs. The morphological behaviors of PVA/AgAlO2 films have been established by scanning electron microscope and atomic force microscopy. The physical interactions between the components in NCs have been evaluated by Fourier transfer infrared spectroscopy. Differential scanning calorimeter data showed a reduction in glass transition temperature (Tg) from 72 °C for PVA to 64 °C for PVA/2.5 wt% NPs. The optical constants of NCs have been evaluated from UV–Visible spectra. The obtained results reveal that band gap energy (Eg) reduces from 4.9 to 2.8 eV and refractive index increases from 1.5 to 2.4 with an increase in AgAlO2 NPs content from 0 to 2.5 wt% in PVA matrix respectively. The current–voltage (I–V) data exhibit non-ohmic behaviors at higher potential voltage region (> 6 V) for NC films.

References

  1. 1.
    P. Sutradhar, M. Saha, J. Phys. Chem. C 120, 8941–8949 (2016)CrossRefGoogle Scholar
  2. 2.
    W.Q. Ji, Q.H. Zhang, C.F. Wang, S. Chen, Ind. Eng. Chem. Res. 55, 11700–11705 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Edwin, J. Rojas, Y. Ciro, Afr. J. Pharm Pharmacol 8, 674–684 (2014)Google Scholar
  4. 4.
    G. Zhang, J. Zhang, B. Yang, J. Acta Polym. Sin. 5, 589–599 (2013)Google Scholar
  5. 5.
    H. Mistry, R. Reske, Z. Zeng, Z. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, J. Am. Chem. Soc. 136, 16473–16476 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Falcaroa, R. Ricco, A. Yazdi, I. Imaz, S. Furukawac, D. Maspochb, R. Ameloot, J.D. Evans, C.J. Doonan, Coord. Chem. Rev. 307, 237–254 (2016)CrossRefGoogle Scholar
  7. 7.
    D. Liu, A.M. Pourrahimi, R.T. Olsson, M.S. Hedenqvist, U.W. Gedde, Eur. Polym. J. 66, 67–77 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Claudia, E. Ciliberto, Inorganic Nanoparticles: Synthesis, Applications, and Perspectives (CRC Press, 2010)Google Scholar
  9. 9.
    S. Dayal, N. Kopidakis, D.C. Olson, D.S. Ginley, G. Rumbles, Nano Lett. 10, 239–242 (2010)CrossRefGoogle Scholar
  10. 10.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K. Khadeer Pasha, A. Bhagat, R. Shirbhate, F. Telare, C. Lakhani, Polym. Plast. Technol. Eng. 55, 231–241 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Mallakpour, M. Dinari, J. Reinf. Plast. Compos. 32(4), 217–224 (2013)CrossRefGoogle Scholar
  12. 12.
    A.A. Semenova, A.P. Semenov, E.A. Gudilina, G.T. Sinyukova, N.A. Brazhe, G.V. Maksimov, E.A. Goodilin, Mendeleev Commun. 26(3), 177–186 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci. 10, 402–434 (2017)CrossRefGoogle Scholar
  14. 14.
    S.C. Yim, A. Sandwell, S.S. Park, ACS Appl. Mater. Interfaces 8, 22369–22373 (2016)CrossRefGoogle Scholar
  15. 15.
    N.G. Imam, M.B. Mohamed, J. Mol. Struct. 1105, 80–86 (2016)CrossRefGoogle Scholar
  16. 16.
    D.M. Fernandes, R. Silva, A.A.W. Hechenleitner, E. Radovanovic, M.A. Custodio Melo, E.A. Gomez Pineda, Mater. Chem. Phys. 115, 110–115 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Chanddrakala, B. Ramaraj, G.M. Shivakumariah, Siddaramaiah, J. Mater. Sci. 47, 8076–8084 (2012)CrossRefGoogle Scholar
  18. 18.
    D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, Appl. Surf. Sci. 156, 200–206 (2000)CrossRefGoogle Scholar
  19. 19.
    S. Gandhi, R. Hari Hara Subramani, T. Ramakrishnan, A. Sivabalan, V. Dhanalakshmi, M.R. Gopinathan Nair, R. Anbarasan, J. Mater. Sci. 45, 1688–1694 (2010)CrossRefGoogle Scholar
  20. 20.
    K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354–74366 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Choudhary, R.J. Sengwa, J. Appl. Polym. Sci. 133, 44568 (2016)Google Scholar
  22. 22.
    H.N. Chandrakala, B. Ramaraj, G.M. Madhu, Shivakumaraiah, Siddaramaiah, J. Phys. Chem. C 117, 4777–4781 (2013)CrossRefGoogle Scholar
  23. 23.
    M.Q.A. Al-Gunaid, A.M.N. Saeed, N.K. Subramani, B.S. Madhukar, Siddaramaiah, J. Mater. Sci. Mater. Electron. 28, 8074–8086 (2017)CrossRefGoogle Scholar
  24. 24.
    M.Q.A. Al-Gunaid, A.M.N. Saeed, Siddaramaiah, J. Appl. Polym. Sci. 135(1–14), 45852 (2017)Google Scholar
  25. 25.
    M.A. Samir, F. Alloin, J.Y. Sanchez, A. Dufresne, Polymer 45(12), 4149–4157 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Hassen, A.M. El Sayed, W.M. Morsi, S. El-Sayed, J. Appl. Phys. 112(1–8), 093525 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Mahendia, A.K. Tomar, R.P. Chahal, P. Goyal, S. Kumar, J. Phys. D 44(20), 205105 (2011)CrossRefGoogle Scholar
  28. 28.
    B. Jarzabek, B. Hajduk, J. Jurusik, M. Domanski, Polym. Test. 59, 230–236 (2017)CrossRefGoogle Scholar
  29. 29.
    G.R. Suma, K.S. Nithin, K.N. Shilpa, S. Sachhidananda, S.V. Satyanarayana, Siddaramaiah, J. Mater. Sci. Mater. Electron. 28(14), 10707–10714 (2017)CrossRefGoogle Scholar
  30. 30.
    C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167–174 (2002)CrossRefGoogle Scholar
  31. 31.
    A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280–290 (2015)CrossRefGoogle Scholar
  32. 32.
    C.M. Muiva, T.S. Sathiaraj, J.M. Mwabora, C.M. Muiva, T.S. Sathiaraj, J.M. Mwabora, Eur. Phys. J. Appl. Phys. 59, 10301 (2012)CrossRefGoogle Scholar
  33. 33.
    B. Ghosh, F.G. Olivos, R.E. Gonza´lez, J. Mater. Sci. 52, 218–228 (2017)CrossRefGoogle Scholar
  34. 34.
    N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, J. Phys. Chem. B 119, 10701–10709 (2015)CrossRefGoogle Scholar
  35. 35.
    O.Gh Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. 26, 5303–5309 (2015)Google Scholar
  36. 36.
    S.B. Aziz, J. Electron. Mater. 45, 736–745 (2016)CrossRefGoogle Scholar
  37. 37.
    A.M. El-Sayed, S. El-Gamal, W.M. Morsi, G. Mohammed, J. Mater. Sci. 50, 4717–4728 (2015)CrossRefGoogle Scholar
  38. 38.
    S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, J. Mater. Sci. Mater. Electron. 26, 8022–8028 (2015)CrossRefGoogle Scholar
  39. 39.
    N.K. Abbas, M.A. Habeeb, A.J.K. Algidsawi, Int. J. Polym. Sci. 2015, 1–10 (2015)CrossRefGoogle Scholar
  40. 40.
    O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015)CrossRefGoogle Scholar
  41. 41.
    F.A. Mustafa, Phys. Sci. Res. Int. 1, 1–9 (2013)Google Scholar
  42. 42.
    T.G. Abdel-Malik, R.M. Abdel-Latif, A. Sawaby, S.M. Ahmed, J. Appl. Sci. Res. 4, 331–336 (2008)Google Scholar
  43. 43.
    S. Mahendia, A.K. Tomar, S. Kumara, J. Alloys Compd. 508, 406–411 (2010)CrossRefGoogle Scholar
  44. 44.
    C. Srikanth, Int. J. Eng. Res. Appl. 4(9), 38–46 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. E. Somesh
    • 1
    • 2
  • Murad Q. A. Al-Gunaid
    • 1
    • 2
    • 4
  • B. S. Madhukar
    • 3
  • Siddaramaiah
    • 1
    Email author
  1. 1.Department of Polymer Science & TechnologySri Jayachamarajendra College of Engineering, JSS Science and Technology UniversityMysuruIndia
  2. 2.JSS Research Foundation, JSSTI CampusMysuruIndia
  3. 3.PG Department of ChemistrySri Jayachamarajendra College of EngineeringMysuruIndia
  4. 4.Department of Chemistry, Faculty of EducationThamar UniversityDhamarYemen

Personalised recommendations