Advertisement

Photoelectric conversion enhancement of Ag modified p-type Cu2O/n-type ZnO transparent heterojunction device

  • Chuang Zhao
  • Jiaqi Pan
  • Beibei Wang
  • Zongjun Dong
  • Ziyuan Jiang
  • Jingjing Wang
  • Changsheng Song
  • Yingying Zheng
  • Chaorong Li
Article
  • 11 Downloads

Abstract

The Ag modified transparent Cu2O/ZnO p–n junction films were prepared by a simple magnetron sputtering process. The transparence and photoelectric conversion of these devices were investigated, which exhibited an obvious photoelectric conversion enhancement (PCE of 0.48%, ten times) than those of the unmodified heterojunction. Through analysis, the enhancement of the photoelectric conversion could be attributed to the remarkable Cu2O/ZnO p–n junction and Ag0 nanoparticles with the performances of photoelectron donor and surface enhanced plasmonic absorption.

Notes

Acknowledgements

This study was funded by the Natural Science Foundation of China (Grant Nos. 51672249, 51603187 and 51802282) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ17F040004).

Supplementary material

10854_2018_183_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1197 KB)

References

  1. 1.
    W.G.P. Kumari, P.G. Ranjith, M.S.A. Perera, X. Li, L.H. Li, B.K. Chen, B.L. Isaka, V.R.S. De Silva, Fuel 230, 138–154 (2018)CrossRefGoogle Scholar
  2. 2.
    L.T. Fuess, M.L. Garcia, M. Zaiat, Sci. Total Environ. 634, 29–40 (2018)CrossRefGoogle Scholar
  3. 3.
    D. Rossi, A. Pecchia, M.A. der Maura, T. Leonhard, H. Rohm, M.J. Hoffmann, A. Colsmann, A. Di Carlo, Nano Energy 48, 20–26 (2018)CrossRefGoogle Scholar
  4. 4.
    G. Xiao, G.H. Zheng, M. Qiu, Q. Li, D.S. Li, M.J. Ni, Appl. Energy 208, 1318–1342 (2017)CrossRefGoogle Scholar
  5. 5.
    J.Y. Kim, Y.J. Jang, J. Park, J. Kim, J.S. Kang, D.Y. Chung, Y.E. Sung, C. Lee, J.S. Lee, M.J. Ko, Appl. Catal. B Environ. 227, 409–417 (2018)CrossRefGoogle Scholar
  6. 6.
    Z.Y. Xiao, T.N. Duan, H.Y. Chen, K. Sun, S.R. Lu, Sol. Energy Mater. Sol. C 182, 1–13 (2018)CrossRefGoogle Scholar
  7. 7.
    B.L. Yuan, Q.Q. Gao, X.Y. Zhang, L.F. Duan, L. Chen, Z. Mao, X.S. Li, W. Lu, Electrochim. Acta 277, 50–58 (2018)CrossRefGoogle Scholar
  8. 8.
    K.Y. Chiu, S.H. Chang, W.C. Huang, H.M. Cheng, H. Shaw, S.C. Yeh, C.T. Chen, Y.O. Su, S.H. Chen, C.G. Wu, Nanotechnology 29, 305701 (2018)CrossRefGoogle Scholar
  9. 9.
    B. Rezaei, N. Irannejad, A.A. Ensafi, Renew. Energ. 123, 281–293 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Al Mamun, T.T. Ava, H.R. Byun, H.J. Jeong, M.S. Jeong, L. Nguyen, C. Gausin, G. Namkoong, Phys. Chem. Chem. Phys. 19, 19487–19495 (2017)CrossRefGoogle Scholar
  11. 11.
    Z.C. Song, Y. Liu, Q.Z. Wang, S. Yuan, Y.R. Yang, X.J. Sun, Y.H. Xin, M.T. Liu, Z.W. Xia, J. Mater. Sci. 53, 7562–7570 (2018)CrossRefGoogle Scholar
  12. 12.
    K.H. Li, R. Kondrotas, C. Chen, S.C. Lu, X.X. Wen, D.B. Li, J.J. Luo, Y. Zhao, J. Tang, Sol. Energy 167, 10–17 (2018)CrossRefGoogle Scholar
  13. 13.
    M.J. Xiao, K. Zhang, Y.C. Jin, Q.W. Yin, W.K. Zhong, F. Huang, Y. Cao, Nano Energy 48, 53–62 (2018)CrossRefGoogle Scholar
  14. 14.
    X.L. Yang, W. Liu, G.Y. Pan, Y. Sun, J. Mater. Sci. 53, 11684–11693 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Turgut, F.S. Kaya, S. Duman, J Mater. Sci. Electron. 29, 7750–7755 (2018)CrossRefGoogle Scholar
  16. 16.
    J.J. Jiang, L.Q. Shi, T.F. Xie, D.J. Wang, Y.H. Lin, Sens. Actuators B Chem. 254, 863–871 (2018)CrossRefGoogle Scholar
  17. 17.
    N.P. Klochko, V.R. Kopach, I.I. Tyukhov, D.O. Zhadan, K.S. Klepikova, G.S. Khrypunov, S.I. Petrushenko, V.M. Lyubov, M.V. Kirichenko, S.V. Dukarov, A.L. Khrypunova, Sol. Energy 164, 149–159 (2018)CrossRefGoogle Scholar
  18. 18.
    N.P. Klochko, O.V. Lukianova, V.R. Kopach, I.I. Tyukhov, N.D. Volkova, G.S. Khrypunov, V.M. Lyubov, M.M. Kharchenko, M.V. Kirichenko, Sol. Energy 134, 156–164 (2016)CrossRefGoogle Scholar
  19. 19.
    X.J. Xu, S. Shukla, Y. Liu, B.B. Yue, J. Bullock, L.X. Su, Y.M. Li, A. Javey, X.S. Fang, J.W. Ager, Phys. Status Solidi R. 12, 1700381 (2018)CrossRefGoogle Scholar
  20. 20.
    P.K. Pagare, A.P. Torane, J. Mater. Sci. Electron. 29, 8473–8479 (2018)CrossRefGoogle Scholar
  21. 21.
    C.M. McShane, K.S. Choi, Phys. Chem. Chem. Phys. 14, 6112–6118 (2012)CrossRefGoogle Scholar
  22. 22.
    Z. Kang, X.Q. Yan, Y.F. Wang, Z.M. Bai, Y.C. Liu, Z. Zhang, P. Lin, X.H. Zhang, H.G. Yuan, X.J. Zhang, Y. Zhang, Sci. Rep. 5, 7882 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Kallatt, S. Nair, K. Majumdar, Small 14, 1702066 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Nishi, T. Miyata, T. Minami, Sol. Energ. Mater. Sol. C 155, 405–410 (2016)CrossRefGoogle Scholar
  25. 25.
    N. Soundaram, R. Chandramohan, S. Valanarasu, R. Thomas, A. Kathalingam, J. Mater. Sci. Electron. 26, 5030–5036 (2018)CrossRefGoogle Scholar
  26. 26.
    Z.G. Zang, Appl. Phys. Lett. 112, 042106 (2018)CrossRefGoogle Scholar
  27. 27.
    K. Eom, D. Lee, S. Kim, H. Seo, J. Phys. D Appl. Phys. 51, 055101 (2018)CrossRefGoogle Scholar
  28. 28.
    J. Jin, C. Wang, X.N. Ren, S.Z. Huang, M. Wu, L.H. Chen, T. Hasan, B.J. Wang, Y. Li, B.L. Su, Nano Energy 38, 118–126 (2017)CrossRefGoogle Scholar
  29. 29.
    J.Z. Dong, J.Z. Ye, D. Ariyanti, Y.X. Wang, S.H. Wei, W. Gao, Chemosphere 204, 193–201 (2018)CrossRefGoogle Scholar
  30. 30.
    J.M. Yan, S.L. Wu, X.F. Zhai, X. Gao, X.F. Li, J. Power Sources 342, 460–466 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Mukhopadhyay, D. Maiti, S. Chatterjee, P.S. Devi, G.S. Kumar, Phys. Chem. Chem. Phys. 18, 31622–31633 (2016)CrossRefGoogle Scholar
  32. 32.
    T. Hyodo, T. Yamashita, Y. Shimizu, Sens. Actuators B Chem. 207, 105–116 (2015)CrossRefGoogle Scholar
  33. 33.
    Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Inorg. Chem. 46, 176980–176986 (2007)Google Scholar
  34. 34.
    J.Z. Wang, Z.Q. Guo, J.P. Zhou, Y.X. Lei, Nanotechnology 29, 305709 (2018)CrossRefGoogle Scholar
  35. 35.
    Z.Y. Jiang, J.Q. Pan, B.B. Wang, C.R. Li, Appl. Surf. Sci. 436, 519–526 (2018)CrossRefGoogle Scholar
  36. 36.
    J.Q. Pan, C. Zhao, X.F. Wei, C.Y. Chi, W.J. Zhao, C.S. Song, Y.Y. Zheng, C.R. Li, Nanotechnology 29, 085202 (2018)CrossRefGoogle Scholar
  37. 37.
    M.K. Kumar, J.Y. Do, A.K. Reddy, M. Kang, Appl. Catal. B Environ. 137, 137–150 (2018)Google Scholar
  38. 38.
    P. Biswas, S.R. Cho, J.W. Kim, S.D. Baek, J.M. Myoung, Nanotechnology 28, 225502 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chuang Zhao
    • 1
  • Jiaqi Pan
    • 1
  • Beibei Wang
    • 1
  • Zongjun Dong
    • 1
  • Ziyuan Jiang
    • 1
  • Jingjing Wang
    • 1
  • Changsheng Song
    • 1
  • Yingying Zheng
    • 1
  • Chaorong Li
    • 1
  1. 1.Department of Physics, Key Laboratory of ATMMT Ministry of EducationZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations