Advertisement

Impact of Ce content on cubic phase cerium–cadmium oxide (Ce–CdO) nanoparticles and its n-CeCdO/p-Si junction diodes

  • K. Mohanraj
  • D. Balasubramanian
  • K. Porkumaran
  • N. Jhansi
  • J. Chandrasekaran
Article
  • 18 Downloads

Abstract

Microwave irradiation method was adopted to synthesize Ce doped CdO nanoparticles. The n-CeCdO/p-Si junction diode was fabricated and it’s parameters have been studied at different doping concentrations (0, 5, 10, and 15 wt%) of Ce. The Ce doping effect was analyzed by various characterization techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photo electron spectroscopy (XPS), ultra violet–visible spectroscopy (UV–Vis) and DC conductivity (I–V) studies. From XRD analysis, the Ce–CdO nanoparticles depicted a crystalline nature and showed the cubic phase. The crystallite size of the samples varied from 18.72 to 14.68 nm. TEM images reveal that the Ce–CdO nanoparticles have nail-like structure. The presence of the elements Ce, Cd and O were confirmed by EDX and XPS studies. The optical bandgap value decreases with the increasing doping concentration and the minimum band gap energy of 2.70 eV is obtained for 15 wt% Ce–CdO sample. I–V curve represents the semiconducting behavior of Ce–CdO nanoparticles. Variation of current in Ce doped CdO nanoparticles exhibits linear response to applied voltage. The diode behavior was studied under darkness and illumination environment. The major diode parameters, ideality factor and barrier height of n-CeCdO/p-Si junction diode were examined using J–V method.

References

  1. 1.
    Z.K. Zhang, M.L. Bai, D.Z. Guo, S.M. Huo, G.M. Zhang, Chem. Commun. 8439, 47–51 (2011)Google Scholar
  2. 2.
    S.J. Chen, G.R. Wang, Y.C. Liu, J. Lumin. 129, 340–343 (2009)CrossRefGoogle Scholar
  3. 3.
    T.V. Torchynska, B. El Filali, J. Lumin. 149, 54–60 (2014)CrossRefGoogle Scholar
  4. 4.
    E.-H. Kong, S.-H. Joo, H.-J. Park, S. Song, Y.-J. Chang, H.S. Kim, H.M. Jang, Small 10, 3678–3684 (2014)CrossRefGoogle Scholar
  5. 5.
    S.K. Apte, S.N. Garaje, G.P. Mane, A. Vinu, S.D. Naik, D.P. Amalnerkar, B.B. Kale, Small 7, 957–964 (2011)CrossRefGoogle Scholar
  6. 6.
    C.N.R. Rao, A. Govindaraj, Nanotubes and Nanowires: Edition 2 (RSC Publishing, Cambridge, 2005)Google Scholar
  7. 7.
    C.N.R. Rao, A. Müller, A.K. Cheetham, Nanomaterials Chemistry: Recent Development and New Directions (Wiley‐VCH Verlag GmbH & Co. KGaA, 2007)Google Scholar
  8. 8.
    D.D.D. Ma, S.T. Lee, Nano Lett. 6, 926–929 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Zhai, X. Fang, Y. Bando, Q. Liao, X. Xu, H. Zeng, Y. Ma, J. Yao, D. Golberg, ACS Nano 3, 949–959 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Zhai, X. Fang, Y. Bando, B. Dierre, B. Liu, H. Zeng, X. Xu, Y. Huang, X. Yuan, T. Sekiguchi, D. Golberg, Adv. Funct. Mater. 19, 2423–2430 (2009)CrossRefGoogle Scholar
  11. 11.
    B.J. Lokhande, M.D. Uplane, Mater. Res. Bull. 36, 439–447 (2001)CrossRefGoogle Scholar
  12. 12.
    J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, S. Jimenez-Sandoval, J. Marquez-Marin, O. Zelaya-Angel, Sol. Energy 80, 142–147 (2006)CrossRefGoogle Scholar
  13. 13.
    D.S. Raj, T. Krishnakumar, R. Jayaprakash, T. Prakash, G. Leonardi, G. Neri, Sens. Actuators B 171, 853–859 (2012)Google Scholar
  14. 14.
    H. Colak, O. Turkoglu, Mater. Sci. Semicond. Process. 16, 712–713 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Okamoto, T. Yoshimi, S. Miura, Appl. Phys. Lett. 53, 678 (1988)CrossRefGoogle Scholar
  16. 16.
    M.K. Jayaraj, C.P.G. Vallabhan, J. Electrochem. Soc. 138, 1512–1516 (1991)CrossRefGoogle Scholar
  17. 17.
    J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, Mater. Sci. Technol. 12, 148–152 (2004)Google Scholar
  18. 18.
    G. Guo, D. Li, Z. Wang, H. Guo, J. Rare Earths 23, 362 (2005)Google Scholar
  19. 19.
    A. Alemi, S. Khademinia, S.W. Joo, M. Dolatyari, A. Bakhtiari, H. Moradi, 2nd Asian symposium on electromagnetics and photonics engineering, Tabriz, 28–30 August 2013Google Scholar
  20. 20.
    S. Sonmezoglu, T.A. Termeli, S. Akın, I. Askeroglu, J. Sol-Gel. Sci. Technol. 67, 97–104 (2013)CrossRefGoogle Scholar
  21. 21.
    A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 27, 2693–2700 (2016)Google Scholar
  22. 22.
    B. Sahin, T. Taşkopru, F. Bayansal, Ceram. Int. 40, 8709–8714 (2014)CrossRefGoogle Scholar
  23. 23.
    S.J. Helen, S. Devadason, T. Mahalingam, J. Mater. Sci.: Mater. Electron. 27, 4426–4432 (2016)Google Scholar
  24. 24.
    M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai, Superlattices Microstruct. 86, 559–563 (2015)CrossRefGoogle Scholar
  25. 25.
    A.A. Dakhel, J. Mater. Sci. 46, 1455–1461 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Robert Xavier, A.T. Ravichandran, K. Ravichandran, S. Mantha, D. Ravinder, J. Mater. Sci.: Mater. Electron. 27, 11182–11187 (2016)Google Scholar
  27. 27.
    K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, A. Chandra Bose, Mater. Sci. Semicond. Process. 79, 74–91 (2018)CrossRefGoogle Scholar
  28. 28.
    A.M. El sayed, A. Ibrahim, Mater. Sci. Semicond. Process. 26, 320–328 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104–113 (2016)CrossRefGoogle Scholar
  30. 30.
    K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, B. Babu, J. Mater. Sci.: Mater. Electron. 28, 7749–7759 (2017)Google Scholar
  31. 31.
    R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, C. Sankar, Mater. Sci. Semicond. Process. 16, 825–832 (2013)CrossRefGoogle Scholar
  32. 32.
    G. Murugadoss, R. Thangamuthu, R. Jayavel, M. Rajesh Kumar, J. Lumin. 165, 30–39 (2015)CrossRefGoogle Scholar
  33. 33.
    S.H. Mohamed, N.M.A. Hadia, A.K. Diab, A.M. Abdel Hakeem, J. Alloys Compd. 609, 68–72 (2014)CrossRefGoogle Scholar
  34. 34.
    F.T. Thema, P. Beukes, A. Gurib-Fakim, M. Maaza, J. Alloy. Compd. 646, 1043–1048 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Sivakumar, A. Venkatesan, P. Soundhirarajan, C.P. Khatiwada, Spectrochim. Acta A 136, 1751–1759 (2015)CrossRefGoogle Scholar
  36. 36.
    P. Kubelka, F. Munk, Z. Tech. Phys. (Leipzig) 12, 593–601 (1931)Google Scholar
  37. 37.
    H. Wang, Z. Wu, Y. Liu, J. Phys. Chem. C 113, 13317–13324 (2009)CrossRefGoogle Scholar
  38. 38.
    P. Velusamy, R. Ramesh Babu, K. Ramamurthi, M.S. Dahlem, E. Elangovan, R. Soc. Chem. Adv. 5, 102741–102749 (2015)Google Scholar
  39. 39.
    Y.-C. Weng, H. Chang, Int. J. Hydrogen Energy 41, 10670–10679 (2016)CrossRefGoogle Scholar
  40. 40.
    W. Li, M. Li, S. Xie, T. Zhai, M. Yu, C. Liang, X. Ouyang, X. Lu, H. Li, Y. Tong, Cryst. Eng. Comm. 15, 4212–4216 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Yang, M. Gao, L. Yang, Y. Zhang, J. Lang, D. Wang, Appl. Surf. Sci. 255, 2646–2650 (2008)CrossRefGoogle Scholar
  42. 42.
    Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, RSC Adv. 5, 59887–59894 (2015)CrossRefGoogle Scholar
  43. 43.
    R. Maity, K.K. Chattopadhyay, Solar Energy Mater. Solar Cells 90, 597–606 (2006)CrossRefGoogle Scholar
  44. 44.
    S.N. Das, A.K. Pal, Vacuum 81, 843–850 (2007)CrossRefGoogle Scholar
  45. 45.
    B. Tatar, D. Demiroglu, M. Ürgen, Microelectron. Eng. 126, 184–190 (2014)CrossRefGoogle Scholar
  46. 46.
    R.J. Zhu, X.A. Zhang, J.W. Zhao, R.P. Li, W.F. Zhang, J. Alloys Compd. 631, 125–128 (2015)CrossRefGoogle Scholar
  47. 47.
    J. Kim, J. Yi, W.A. Anderson, Thin Solid Films 518, 6510–6513 (2010)CrossRefGoogle Scholar
  48. 48.
    I. Pradeep, E. Ranjith Kumar, N. Suriyanarayananc, C. Srinivas, M.V.K. Mehar, Ceram. Int. 44, 7098–7109 (2018)CrossRefGoogle Scholar
  49. 49.
    I. Pradeep, E. Ranjith Kumar, N. Suriyanaranan, C. Srinivas, N. Venkata Rao. J. Mater. Sci.: Mater. Electron. 29, 9840–9853 (2018)Google Scholar
  50. 50.
    R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, R. Mariappan, RSC Adv. 6, 53967–53980 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Mohanraj
    • 1
  • D. Balasubramanian
    • 1
  • K. Porkumaran
    • 2
  • N. Jhansi
    • 1
  • J. Chandrasekaran
    • 3
  1. 1.Raman Research Laboratory, PG & Research Department of PhysicsGovernment Arts CollegeTiruvannamalaiIndia
  2. 2.Department of Electrical & Electronics EngineeringDr.N.G.P. Institute of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia

Personalised recommendations