Advertisement

Synthesis and enhanced visible light-induced photocatalytic activity of a hierarchical porous biomorphic N/Zn–TiO2@NH2-MIL-125 photocatalyst

  • Yingying Du
  • Lei Zhao
  • Hui Chen
  • Zhaohui Huang
  • Xuan He
  • Wei Fang
  • Weixin Li
  • Fuqing Zhang
  • Guanghui Wang
Article
  • 10 Downloads

Abstract

Heterojunction is considered as very promising material for various applications in photocatalysis. Herein, an efficient heterojunction photocatalyst N/Zn–TiO2@NH2-MIL-125 was successfully synthesized for photo-degradation organic oxidation by biological-templated method. The electron–hole pairs can be separated in space more efficiently because of heterojunction structure. Systematical analyses of spectroscopy and microscopy measurements revealed that N/Zn–TiO2@NH2-MIL-125 heterojunction materials exhibited hierarchical porous structure with high surface area of 366.02 m2 g−1 and outstanding optical properties. Photocatalytic activity was investigated by degradating of rhodamine B (1000 µM) under visible-light irradiation. The N/Zn–TiO2@NH2-MIL-125 showed enhanced photocatalytic activity for RhB degradation, which is respectively about 1.81 and 1.97 times higher than that of the pristine N/Zn–TiO2 and NH2-MIL-125. Various advanced spectroscopic characterizations were applied including photoluminescence, Mott–Schottky curves and electrochemical impedance spectroscopy. A possible mechanism of enhanced photocatalytic oxidation activity for N/Zn–TiO2@NH2-MIL-125 composite under visible light irradiation was discussed.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hubei Provincial China (2017CFC829, 2017CFB291), National Natural Science Foundation of China (61604110, 51802234), Key Technology R&D Program of Hubei Province (2015BCA253), China Postdoctoral Science Foundation (2015M572210, 2016M602376), Department of Education Science Research Program of Hubei Province (Q20161110), and Open Foundation of Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education (NRGCT201503), Training Programs of Innovation and Entrepreneurship for Undergraduates of Province (201510488022), Guidance Project of Scientific Research Plan of Hubei Provincial Department of Education (B2017014) and Key Projects of Scientific Research Program of Hubei Provincial Department of Education (D20171505). This work was also financially supported by the China Scholarship Council (201708420021) for Dr. Hui Chen.

Supplementary material

10854_2018_171_MOESM1_ESM.docx (783 kb)
Supplementary material 1 (DOCX 782 KB)

References

  1. 1.
    S. Weon, W. Choi, TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environ Sci Technol 50(5), 2556–2563 (2016)CrossRefGoogle Scholar
  2. 2.
    Y.H. Hu, A highly efficient photocatalyst–hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem. Int. Ed. 51(50), 12410–12412 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Sheng, D. Chen, N. Li et al., Urchin-inspired TiO2@MIL-101 double-shell hollow particles: adsorption and highly efficient photocatalytic degradation of hydrogen sulfide. Chem. Mater. 29(13), 5612–5616 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Wang, H. Liu, S. Wang et al., Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-templating. Appl. Catal. B 224, 341–349 (2018)CrossRefGoogle Scholar
  5. 5.
    G. Dai, H. Qin, H. Zhou et al., Template-free fabrication of hierarchical macro/mesoporpous SnS2/TiO2 composite with enhanced photocatalytic degradation of methyl orange (MO). Appl. Surf. Sci. 430, 446–488 (2018)CrossRefGoogle Scholar
  6. 6.
    T. Tachikawa, S. Yamashita, T. Majima, Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133(18), 7197–7204 (2011)CrossRefGoogle Scholar
  7. 7.
    J.H. Pan, G. Han, R. Zhou et al., Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase {101} facets. Chem. Commun. 47(24), 6942–6944 (2011)CrossRefGoogle Scholar
  8. 8.
    Z. Jiang, X. Lv, D. Jiang et al., Natural leaves-assisted synthesis of nitrogen-doped, carbon-rich nanodots-sensitized, Ag-loaded anatase TiO2 square nanosheets with dominant {001} facets and their enhanced catalytic applications. J. Mater. Chem. A 1(47), 14963–14972 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Zhou, D. Liang, T. Fan et al., Leaf-inspired hierarchical porous CdS/Au/N-TiO2, heterostructures for visible light photocatalytic hydrogen evolution. Appl. Catal. B 147(7), 221–228 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Qin, M. Liu, Y. Wu et al., Bioinspired hollow and hierarchically porous MOx (M = Ti, Si)/carbon microellipsoids supported with Fe2O3 for heterogenous photochemical oxidation. Appl. Catal. B 194, 50–60 (2016)CrossRefGoogle Scholar
  11. 11.
    L. Ding, H. Zhou, S. Lou et al., Butterfly wing architecture assisted CdS/Au/TiO2, Z-scheme type photocatalytic water splitting. Int. J. Hydrogen Energy 38(20), 8244–8253 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Ma, H.C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 46(1), 44–53 (2010)CrossRefGoogle Scholar
  13. 13.
    H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 112(2), 673–674 (2012)CrossRefGoogle Scholar
  14. 14.
    C. Racles, M.F. Zaltariov, M. Iacob et al., Siloxane-based metal–organic frameworks with remarkable catalytic activity in mild environmental photodegradation of azo dyes. Appl. Catal. B 205, 78–92 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Usman, S. Mendiratta, K. Lu, Semiconductor metal–organic frameworks: future low-bandgap materials. Adv. Mater. 29(6), 1605071 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Falcaro, R. Ricco, A. Yazdi et al., Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 307, 237–254 (2016)CrossRefGoogle Scholar
  17. 17.
    Z. Gu, L. Chen, B. Duan et al., Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity. Chem. Commun. 52(1), 116 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. An, H. Li, Y. Liu et al., Photoelectrical, photophysical and photocatalytic properties of Al based MOFs: MIL-53(Al) and MIL-53-NH2 (Al). J. Solid State Chem. 233, 194–198 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Li, H. Xu, S. Ouyang et al., Metal-organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 18(11), 7563–7572 (2016)CrossRefGoogle Scholar
  20. 20.
    Z.L. Wu, C.H. Wang, B. Zhao et al., A semi-conductive copper-organic framework with two types of photocatalytic activity. Angew. Chem. Int. Ed. 55(16), 4938–4942 (2016)CrossRefGoogle Scholar
  21. 21.
    X. Li, W. Guo, Z. Liu et al., Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 369, 130–136 (2016)CrossRefGoogle Scholar
  22. 22.
    S.R. Zhu, P.F. Liu, M.K. Wu et al., Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light. Dalton Trans. 45(43), 17521 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Li, Y. Pi, L. Wu et al., Facilitation of the visible light-induced fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-iron terephthalate metal-organic framework for MB degradation. Appl. Catal. B 202, 653–663 (2017)CrossRefGoogle Scholar
  24. 24.
    D. Yang, T. Fan, H. Zhou et al., Biogenic hierarchical TiO2/SiO2 derived from rice husk and enhanced photocatalytic properties for dye degradation. PLoS ONE 6(9), e24788 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Lu, X.Y. Wei, Z. Wen et al., Photocatalytic depolymerization of rice husk over TiO2, with H2O2. Fuel Process. Technol. 117(1), 8–16 (2014)CrossRefGoogle Scholar
  26. 26.
    D. Yang, B. Du, Y. Yan et al., Rice-husk-templated hierarchical porous TiO2/SiO2 for enhanced bacterial removal. ACS Appl. Mater. Interfaces 6(4), 2377–2385 (2014)CrossRefGoogle Scholar
  27. 27.
    F. Adam, L. Muniandy, R. Thankappan, Ceria and titania incorporated silica based catalyst prepared from rice husk: adsorption and photocatalytic studies of methylene blue. J. Colloid Interface Sci. 406(18), 209–216 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Adam, J.N. Appaturi, Z. Khanam et al., Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium. Appl. Surf. Sci. 264(1), 718–726 (2013)CrossRefGoogle Scholar
  29. 29.
    R. Ahmad, R. Kumar, Adsorption studies of hazardous malachite green onto treated ginger waste. J. Environ. Manage. 91(4), 1032–1038 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Artkla, W. Kim, W. Choi et al., Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica. Appl. Catal. B 91(1), 157–164 (2009)CrossRefGoogle Scholar
  31. 31.
    I.A. Perales-Martínez, V. Rodríguez-González, S.-W. Lee et al., Facile synthesis of InVO4/TiO2, heterojunction photocatalysts with enhanced photocatalytic properties under UV–Vis irradiation. J. Photochem. Photobiol. A 299, 152–158 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Chen, L. Zhao, Y. Xiang et al., A novel Zn–TiO2/C@SiO2 nanoporous material on rice husk for photocatalytic applications under visible light. Desalin. Water Treatment 57(21), 9660–9670 (2016)CrossRefGoogle Scholar
  33. 33.
    W. Hou, X. Yuan, W. Yan et al., In situ synthesis of In2S3 @MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl. Catal. B 186, 19–29 (2016)CrossRefGoogle Scholar
  34. 34.
    X.U. Hui, SiO/TiOC/C, preparation, characterization, adsorption and visible-light photocatalytic properties. Chin J Inorg Chem 29(3), 557–564 (2013)Google Scholar
  35. 35.
    Z. Yang, X. Xu, X. Liang et al., Construction of heterostructured MIL-125/Ag/g-C3N4, nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl Catal B 205, 42–54 (2017)CrossRefGoogle Scholar
  36. 36.
    Z. Yin, C. Li, X. Liu et al., Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame. Appl Catal B 79(3), 208–215 (2008)CrossRefGoogle Scholar
  37. 37.
    J. Low, J. Yu, M. Jaroniec et al., Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Kang, Hydrogen peroxide activated commercial P25 TiO2 as efficient visible-light-driven photocatalyst on dye degradation. Int. J. Electrochem. Sci. 12(6), 5284–5293 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Lin, W. Cui, X. Li et al., Cu2O NPs/Bi2O2CO3, flower-like complex photocatalysts with enhanced visible light photocatalytic degradation of organic pollutants. Catal Today 297, 237–245 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.School of Materials and MetallurgyWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  3. 3.HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, College of Chemical Engineering and TechnologyWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  4. 4.School of Chemical and EnvironmentalWuhan Institute of TechnologyWuhanPeople’s Republic of China

Personalised recommendations