Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20347–20355 | Cite as

Solid-state synthesis and characterization of α-Fe2O3@ZnO nanocomposites with enhanced visible light driven photocatalytic activity

  • R. Suresh
  • Claudio Sandoval
  • Eimmy Ramírez
  • Ángela Álvarez
  • Héctor D. Mansilla
  • R. V. Mangalaraja
  • Jorge Yáñez
Article
  • 117 Downloads

Abstract

The α-Fe2O3@ZnOx (x = 25, 50 and 75 mol%) nanocomposites were synthesized by solid-state method. The formation of nanocomposites was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy and UV–Visible absorption spectroscopy. High purity of α-Fe2O3 and ZnO was observed in XRD patterns including lesser amount of ZnFe2O4. The growth of ZnO nanostructures on Fe2O3 rods was affirmed by scanning and transmission electron microscopy. Visible light driven photocatalytic degradation of roxarsone (ROX) was performed by using as-synthesized nanocomposites. The photocatalytic experiments were monitored by high pressure liquid chromatography. The α-Fe2O3@ZnO50% shows 89.7% of ROX degradation efficiency within 330 min and thus it exhibits best photocatalytic activity than the other composites. Moreover, the stability and possible photocatalytic pathway were also evaluated.

Notes

Acknowledgements

RS acknowledges the National Commission for Scientific and Technological Research (CONICYT), Santiago, Chile, for the financial assistance in the form of Fondecyt Post-Doctoral Project No: 3160499. The authors also thank the doctoral scholarship of Ángela Álvarez (CONICYT No. 21161209), and support of projects FONDECYT 1151296; Center Optics and Photonics, Grant CONICYT-PFB-0824, CONICYT/FONDAP/15110019.

Supplementary material

10854_2018_170_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1675 KB)

References

  1. 1.
    P. Qiu, B. Park, J. Choi, B. Thokchom, A.B. Pandit, J. Khim, A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 45, 29–49 (2018)CrossRefGoogle Scholar
  2. 2.
    Z. Huang, Y. Yang, L. Gong, M. Ma, C. Xu, Sr2+ and Tb3+ doping tuning the size, morphology, and photoluminescence of NaCeF4 nanorods via solvothermal method. Chem. Eng. J. 286, 602–609 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Li, B. Jin, J. Huang, Q. Zhang, R. Peng, S. Chu, Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light. Solid State Sci. 80, 6–14 (2018)CrossRefGoogle Scholar
  4. 4.
    N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: structural and operational comparison. J. Environ. Chem. Eng. 5, 5707–5720 (2017)CrossRefGoogle Scholar
  5. 5.
    D. Adak, B. Show, A. Mondal, N. Mukherjee, ZnO/γ-Fe2O3 charge transfer interface in zinc-iron oxide hollow cages towards efficient photodegradation of industrial dyes and methanol electrooxidation. J. Catal. 355, 63–72 (2017)CrossRefGoogle Scholar
  6. 6.
    N. Li, J. Zhang, Y. Tian, J. Zhao, J. Zhang, W. Zuo, Precisely controlled fabrication of magnetic 3D γ-Fe2O3@ZnO core-shell photocatalyst with enhanced activity: ciprofloxacin degradation and mechanism insight. Chem. Eng. J. 308, 377–385 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Kim, Y.D. Huh, Morphology-dependent photocatalytic activities of hierarchical microstructures of ZnO. Mater. Lett. 65, 2100–2103 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Fu, B. Zhang, H. Liu, B. Zong, L. Huang, H. Bala, Z. Zhang, Synthesis and improved gas sensing properties of ZnO/α-Fe2O3 microflowers assembled with nanosheets. Mater. Lett. 196, 149–152 (2017)CrossRefGoogle Scholar
  9. 9.
    R.S. Yadav, J. Havlica, J. Masilko, J. Tkacz, I. Kuritka, J. Vilcakova, Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Mater. Sci. Mater. Electron. 27, 5992–6002 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Zhu, Y. Fu, W. Zang, Y. Zhao, L. Xing, X. Xue, Room-temperature self-powered ethanol sensor based on the piezo-surface coupling effect of heterostructured α-Fe2O3/ZnO. Mater. Lett. 166, 288–291 (2016)CrossRefGoogle Scholar
  11. 11.
    K. Acuña, J. Yáñez, R. Suresh, E. Ramírez, J.P. Cuevas, H.D. Mansilla, P. Santander, Photocatalytic degradation of roxarsone by using synthesized ZnO nanoplates. Sol. Energy 157, 335–341 (2017)CrossRefGoogle Scholar
  12. 12.
    D.J. Fisher, L.T. Yonkos, K.W. Staver, Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA. Environ. Sci. Technol. 49, 1999–2012 (2015)CrossRefGoogle Scholar
  13. 13.
    K.E. Nachman, J.N. Mihalic, T.A. Burke, A.S. Geyh, Comparison of arsenic content in pelletized poultry house waste and biosolids fertilizer. Chemosphere 71, 500–506 (2008)CrossRefGoogle Scholar
  14. 14.
    G. Chen, H. Liu, W. Zhang, B. Li, L. Liu, G. Wang, Roxarsone exposure jeopardizes nitrogen removal and regulates bacterial community in biological sequential batch reactors. Ecotox. Environ. Saf. 159, 232–239 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Suresh, R. Udayabhaskar, C. Sandoval, E. Ramírez, R.V. Mangalaraja, H.D. Mansilla, D. Contreras, J. Yáñez, Effect of reduced graphene oxide on the structural, optical, adsorption and photocatalytic properties of iron oxide nanoparticles. New J. Chem. 42, 8485–8493 (2018)CrossRefGoogle Scholar
  16. 16.
    W. Yan, H. Fan, C. Yang, Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core-shell structure. Mater. Lett. 65, 1595–1597 (2011)CrossRefGoogle Scholar
  17. 17.
    R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, A. Stephen, V. Narayanan, Doping of Co into V2O5 nanoparticles enhances photodegradation of methylene blue. J. Alloy. Compd. 598, 151–160 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Zamiri, S.A. Salehizadeh, H.A. Ahangar, M. Shabani, A. Rebelo, J. Suresh Kumar, M.J. Soares, M.A. Valente, J.M.F. Ferreira, Optical and magnetic properties of ZnO/ZnFe2O4 nanocomposite. Mater. Chem. Phys. 192, 330–338 (2017)CrossRefGoogle Scholar
  19. 19.
    C. Liu, D. Meng, H. Pang, X. Wu, J. Xie, X. Yu, L. Chen, X. Liu, Influence of Fe-doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Magn. Magn. Mater. 324, 3356–3360 (2012)CrossRefGoogle Scholar
  20. 20.
    X. Jia, D. Lian, B. Shi, R. Dai, C. Li, X. Wu, Facile synthesis of α-Fe2O3@graphene oxide nanocomposites for enhanced gas-sensing performance to ethanol. J. Mater. Sci. Mater. Electron. 28, 12070–12079 (2017)CrossRefGoogle Scholar
  21. 21.
    H.S. Hwang, S.H. Oh, H.S. Kim, W.I. Cho, B.W. Cho, D.Y. Lee, Characterization of Ag-doped vanadium oxide (AgxV2O5) thin film for cathode of thin film battery. Electrochim. Acta 50, 485–489 (2004)CrossRefGoogle Scholar
  22. 22.
    R. Suresh, A. Vijayaraj, K. Giribabu, R. Manigandan, R. Prabu, A. Stephen, E. Thirumal, V. Narayanan, Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property. J. Mater. Sci. Mater. Electron. 24, 1256–1263 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Çolak, E. Karaköse, G. Kartopu, Effect of consumption of the sol–gel deposited ZnO seed layer on the growth and properties of high quality ZnO nanorods. J. Mater. Sci. Mater. Electron. 29, 11964–11971 (2018)CrossRefGoogle Scholar
  24. 24.
    P.A. Vinosha, L.A. Mely, J.E. Jeronsia, S. Krishnan, S.J. Das, Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik 134, 99–108 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Li, K. Wang, J. Wu, L. Gu, Z. Lu, X. Wang, X. Cao, Synthesis of highly permeable Fe2O3/ZnO hollow spheres for printable photocatalysis. RSC Adv. 5, 88277–88286 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Raoufi, Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. 134, 213–219 (2013)CrossRefGoogle Scholar
  27. 27.
    G.K. Pradhan, D.K. Padhi, K.M. Parida, Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl. Mater. Interfaces 5, 9101–9110 (2013)CrossRefGoogle Scholar
  28. 28.
    W. Gan, S. Xiao, L. Gao, R. Gao, J. Li, X. Zhan, Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustain. Chem. Eng. 5, 3855–3862 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Suresh, K. Giribabu, R. Manigandan, A. Stephen, V. Narayanan, Fabrication of Ni–Fe2O3 magnetic nanorods and application to the detection of uric acid. RSC Adv. 4, 17146–17155 (2014)CrossRefGoogle Scholar
  30. 30.
    N. Mala, K. Ravichandran, S. Pandiarajan, N. Srinivasan, B. Ravikumar, K.C. Siriya Pushpa, K. Swaminathan, T. Arun, Formation of hexagonal plate shaped ZnO microparticles: a study on antibacterial and magnetic properties. Ceram. Int. 42, 7336–7346 (2016)CrossRefGoogle Scholar
  31. 31.
    C.C. Lin, Y.Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dehydrate. Mater. Chem. Phys. 113, 334–337 (2009)CrossRefGoogle Scholar
  32. 32.
    S.M. Hoque, M.S. Hossain, S. Choudhury, S. Akhter, F. Hyder, Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications. Mat. Lett. 162, 60–63 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Li, X. Yu, J. He, Z. Xu, Controllable fabrication, growth mechanisms, and photocatalytic properties of hematite hollow spindles. J. Phys. Chem. C 113, 2837–2845 (2009)CrossRefGoogle Scholar
  34. 34.
    J.Y. Jing, W.Y. Li, A. Boyd, Y. Zhang, V.L. Colvin, W.W. Yu, Photocatalytic degradation of quinoline in aqueous TiO2 suspension. J. Hazard. Mater. 237, 247–255 (2012)CrossRefGoogle Scholar
  35. 35.
    Y. Zhu, C. Peng, Z.F. Gao, H. Yang, W.M. Liu, Z.J. Wu, Hydrothermal synthesis of CaFe2O4/α-Fe2O3 composite as photocatalyst and its photocatalytic activity. J. Environ. Chem. Eng. 6, 3358–3365 (2018)CrossRefGoogle Scholar
  36. 36.
    S.D. Kulkarni, S. Kumbar, S.G. Menon, K.S. Choudhari, Magnetically separable core-shell ZnFe2O4@ZnO nanoparticles for visible light photodegradation of methyl orange. Mater. Res. Bull. 77, 70–77 (2016)CrossRefGoogle Scholar
  37. 37.
    M. Ge, Y. Chen, M. Liu, M. Li, Synthesis of magnetically separable Ag3PO4/ZnFe2O4 composite photocatalysts for dye degradation under visible LED light irradiation. J. Environ. Chem. Eng. 3, 2809–2815 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. Suresh
    • 1
  • Claudio Sandoval
    • 1
  • Eimmy Ramírez
    • 1
  • Ángela Álvarez
    • 1
  • Héctor D. Mansilla
    • 2
  • R. V. Mangalaraja
    • 3
  • Jorge Yáñez
    • 1
  1. 1.Department of Analytical and Inorganic Chemistry, Faculty of Chemical SciencesUniversity of ConcepciónConcepciónChile
  2. 2.Department of Organic Chemistry, Faculty of Chemical SciencesUniversity of ConcepciónConcepciónChile
  3. 3.Department of Materials Engineering, Faculty of EngineeringUniversity of ConcepciónConcepciónChile

Personalised recommendations