Advertisement

Bulk heterojunction solar cells based on polyaniline/multi wall carbon nanotube: from morphology control to cell efficiency

  • Reza Charekhah
  • Zeinab Jarrahi
  • Mahsa Darabi
  • Amin Imani
  • Gholamali FarziEmail author
Article
  • 34 Downloads

Abstract

In this study, polyaniline/multiwall carbon nanotube nanocomposite (PANI/MWCNT) was first synthesized, and a simple organic solar cell was then fabricated containing PANI/MWCNT with cauliflower morphology as an active layer. In the next step; the influence of different parameters such as MWCNT content, the cathode buffer layer, the electrolyte and the presence of dye on the efficiency were experimentally investigated. The effect of carbon nanotubes weight percent on efficiency was studied by measuring the band gap using the UV–Vis characterization. In order to detect the chemical bonding between MWCNT and PANI, the Fourier transform-infrared spectroscopy was used. Also in order to investigate morphology, field emission scanning electron microscopy images of the composite were obtained, and conductivity properties were measured using a standard 4-point DC/voltage method at room temperature. The results showed that by increasing the amount of MWCNT in the composite, the band gap decreased and thus the cell efficiency increased. In a multi-layer cell with cauliflower morphology, due to the excellent synergy between the active layer of PANI/MWCNT and the dye cell components, a significant increase in photovoltaic profile was observed in comparison with simple cells with cauliflower morphology.

Supplementary material

10854_2018_169_MOESM1_ESM.docx (263 kb)
Supplementary material 1 (DOCX 262 KB)

References

  1. 1.
    S. Sharma, K.K. Jain, A. Sharma, Mater. Sci. Appl. 6, 1145–1155 (2015)Google Scholar
  2. 2.
    A.M. Bagher, M.M.A. Vahid, M. Mohsen, Am. J. Opt. and Photonics 3(5), 94–113 (2015)Google Scholar
  3. 3.
    N.D. Treat, M.A. Brady, G. Smith, M.F. Toney, E.J. Kramer, C.J. Hawker, M.L. Chabinyc, Adv. Energy Mater. 1, 82–89 (2011)Google Scholar
  4. 4.
    S. Palaniappan, A. John, Prog. Polym. Sci. 33, 732–58 (2008)Google Scholar
  5. 5.
    T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds, Handbook of conducting polymers, (Wiley, New York, 1997)Google Scholar
  6. 6.
    G. Premamoy, K.S. Samir, C. Amit, Eur. Polym. J. 35, 699 (1999)Google Scholar
  7. 7.
    C. Oueiny, S. Berlioz, F.X. Perrin, Prog. Polym. Sci. 39, 707–748 (2014)Google Scholar
  8. 8.
    H. Niua, Sh Qin, X. Mao, Sh Zhang, R. Wang, L. Wan, J.X. Miao, Electrochim. Acta 121, 285–293 (2014)Google Scholar
  9. 9.
    G. Li, R. Zhu, Y. Yang, Nat. Photonics 6, 153–161 (2012)Google Scholar
  10. 10.
    T. Hu, L. Li, Sh Xiao, K. Yuan, H. Yang, L. Chen, Y. Chen, Org. Electron. 38, 350–356 (2016)Google Scholar
  11. 11.
    J. Zhao, J. Ma, X. Nan, B. Tang, Org. Electron. 30, 52–59 (2016)Google Scholar
  12. 12.
    H. Li, Y. Xiao, G. Han, Y. Zhang, Org. Electron. 50, 161–169 (2017)Google Scholar
  13. 13.
    D. Yun, Y.J. Jeong, H. Ra, J.M. Kim, T.K. An, S.W. Rhee, J. Jang, Org. Electron. 52, 7–16 (2018)Google Scholar
  14. 14.
    J. Yan, T. Ni, F. Zou, L. Zhang, D. Yang, Diam. Relat. Mater. 41, 79–83 (2014)Google Scholar
  15. 15.
    S.P. Somani, P.R. Somani, M. Umeno, E. Flahaut, Appl. Phys. Lett. 89, 223505 (2006)Google Scholar
  16. 16.
    A. Arena, N. Daonato, G. Saitta, Microelectron. J. 39, 1659–1662 (2008)Google Scholar
  17. 17.
    M.C. Wu, Y.Y. Lin, S. Chen, H.C. Liao, Y.J. Wu, C.W. Chen, Y.F. Chen, W.F. Su, Chem. Phys. Lett. 468, 64–68 (2009)Google Scholar
  18. 18.
    A. Imani, Gh Farzi, J. Mater. Sci. Mater. Electron. 28, 10684–10692 (2017)Google Scholar
  19. 19.
    D.J. Guo, H.L. Li, Solid State Electrochem. 9, 445–449 (2005)Google Scholar
  20. 20.
    D. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J. Kim, D.Y. Kim, Appl. Phys. Lett. (2007).  https://doi.org/10.1063/1.2800290 Google Scholar
  21. 21.
    S.P. Somani, P.R. Somani, M. Umeno, Diam. Relat. Mater. 17, 585–588 (2008)Google Scholar
  22. 22.
    L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 73, 1197 (1998)Google Scholar
  23. 23.
    Z. Jin, K.P. Pramoda, G. Xu, S.H. Goh, Chem. Phys. Lett. 337, 43–47 (2001)Google Scholar
  24. 24.
    Z.J. Jia, Z.Y. Wang, C.L. Xu, J. Liang, B.Q. Wei, D.H. Wu, S.W. Zhu, Mater. Sci. Eng. A 271, 395 (1999)Google Scholar
  25. 25.
    G.Z. Chen, M.S.P. Shaffer, D. Coleby, G. Dixon, W.Z. Zhou, D.J. Fray, A.H. Windle, Adv. Mater. 12, 522 (2000)Google Scholar
  26. 26.
    H.C. Liao, C.C. Ho, C.Y. Chang, M.H. Jao, S.B. Darling, W.F. Su, Mater. Today 16, 326–336 (2013)Google Scholar
  27. 27.
    X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 5(4), 579–583 (2005)Google Scholar
  28. 28.
    K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, F. Liu, T.P. Russell, H. Wu, X. Peng, Adv. Mater. 28(23), 4727–4733 (2016)Google Scholar
  29. 29.
    K. Gao, L. Xiao, Y. Kan, B. Yang, J. Peng, Y. Cao, F. Liu, T.P. Russell, X. Peng, J. Mater. Chem. C 4, 3843–3850 (2016)Google Scholar
  30. 30.
    H. Zengin, W. Zhou, J. Jin, R. Czerw, D.W. Smith, L. Echegoyen, D.L. Carroll, S.H. Foulger, J. Ballato, Adv. Mater. 14(20), 1480–1483 (2002)Google Scholar
  31. 31.
    S. Sinha, S. Bhadra, D. Khastgir, J. Appl. Polym. Sci. 112, 3135–3140 (2009)Google Scholar
  32. 32.
    A. Mekki, S. Samanta, A. Singh, Z. Salmi, R. Mahmoud, M.M. Chehimi, D.K. Aswal, J. Colloid Interface Sci. 418, 185–192 (2014)Google Scholar
  33. 33.
    Y. Liao, C. Zhang, Y. Zhang, V. Strong, J. Tang, X.G. Li, K. Kalantarzadeh, E.M.V. Hoek, K.L. Wang, R.B. Kaner, Nano Lett. 11, 954–959 (2011)Google Scholar
  34. 34.
    S.K. Das, R. Prakash, Emerging Trends in Electronic and Photonic Devices & Systems (IEEE, Piscataway, 2009), pp. 525–527Google Scholar
  35. 35.
    F. Yilmaz, Z. Küçükyavuz, J. Appl. Polym. Sci. 111, 680–684 (2009)Google Scholar
  36. 36.
    G. Otrokhov, D. Pankratov, G. Shumakovich, M. Khlupova, Y. Zeifman, I. Vasil’eva, O. Morozova, A. Yaropolov, Electrochim. Acta 123, 151–157 (2014)Google Scholar
  37. 37.
    Z. Zhang, Z. Wei, M. Wan, Macromolecules 35, 5937–5942 (2002)Google Scholar
  38. 38.
    T.K. Srinivasan, B. Venkatraman, M. Kamarudin, D. Ponraju, A.K. Arora, in International Conference on Nanoscience, Engineering and Technology (ICONSET) (2011), pp. 528–531Google Scholar
  39. 39.
    T. Jeevananda, S. Palaniappan, J. Appl. Polym. Sci. 74, 3507–3512 (1999)Google Scholar
  40. 40.
    S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Phys. Rev. B 50, 12496–12508 (1994)Google Scholar
  41. 41.
    H. Zhou, X. Wang, K. Yu, C. Zhang, H. Li, Z. Du, Integr. Ferroelectr. 154, 159–165 (2014)Google Scholar
  42. 42.
    A. Imani, G. Farzi, A. Ltaief, Int. Nano Lett. 3, 8 (2013)Google Scholar
  43. 43.
    T. Jeevananda, N.H. Siddaramaiah, S.-B. Kim, J.H. Heo, Lee, Polym. Adv. Technol. 19, 1754–1762 (2008)Google Scholar
  44. 44.
    W. Wu, Y. Li, L. Yang, Y. Ma, X. Yan, Synth. Met. 193, 48–57 (2014)Google Scholar
  45. 45.
    X.L. Wei, Y.Z. Wang, S.M. Long, C. Bobeczko, A.J. Epstein, J. Am. Chem. 118, 2545–2555 (1996)Google Scholar
  46. 46.
    K. Gurunathan, D.P. Amalnerkar, D.C. Trivedi, Mater. Lett. 57, 1642–1648 (2003)Google Scholar
  47. 47.
    Y. Coskun, A. Cirpan, L. Toppare, Polymer 45, 4989–4995 (2004)Google Scholar
  48. 48.
    A.S. Hassanien, K.A. Aly, A.A. Akl, J. Alloys Compd. 685, 733–742 (2016)Google Scholar
  49. 49.
    B.G. Kim, X. Ma, C. Chen, Y. Ie, E.W. Coir, H. Hashemi, Y. Aso, P.F. Green, J. Kieffer, J. Kim, Adv. Funct. Mater. 23, 439–445 (2013)Google Scholar
  50. 50.
    X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, Nat. Photonics 7, 825–833 (2013)Google Scholar
  51. 51.
    S. Chen, C.E. Small, C.M. Amb, J. Subbiah, T.H. Lai, S.W. Tsang, J.R. Mandres, J.R. Reynolds, F. So, Adv. Energy Mater. 2, 1333–1337 (2012)Google Scholar
  52. 52.
    Z. Yuan, J. Yu, N. Wang, Y. Jiang, J. Mater. Sci. Mater. Electron. 22, 1730–1735 (2011)Google Scholar
  53. 53.
    Y. Xiao, J. Lin, J. Wu, S. Tai, G. Yue, T. Lin, J. Power Source 233, 320–325 (2013)Google Scholar
  54. 54.
    H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 3(11), 649–653 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Reza Charekhah
    • 1
  • Zeinab Jarrahi
    • 1
  • Mahsa Darabi
    • 1
  • Amin Imani
    • 1
    • 2
  • Gholamali Farzi
    • 1
    Email author
  1. 1.Department of Materials and Polymer Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevarIran
  2. 2.Department of Materials EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations