Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20312–20318 | Cite as

Influence of metals for rear metallization on c-Si solar cells

  • Zhiping Huang
  • Deyuan Wei
  • Jianhui Chen
  • Ren He
  • Ying Xu
  • Xiaowei Li
Article
  • 48 Downloads

Abstract

With the development of novel n-type crystalline silicon based solar cells, low work function metals compatibility for rear metallization without heat treatment process motivate much attention. In this study, we demonstrate contact characteristics and performances of n-Pasha solar cells with Hf/Ag, Mg/Ag and Ag as rear metallization layers. n-Pasha solar cells with Mg contact layer achieved a series resistance of 0.24 Ω in contrast to Hf of 0.82 Ω and Ag of 1.52 Ω, respectively. It is visible that n-type crystalline silicon solar cell with Mg rear metallization exhibits excellent contact characteristic. In contrast to Ag contact, the open circuit voltage and fill factor of Mg contact were increased by 9% (relative) with a gain of 47 mV and 1.3% (absolute), respectively. The resultant power conversion efficiency of Mg contact obtained a gain of 1.5% (absolute) and 10.5% (relative) compared with Ag contact. Thus, this new technique can be exactly catering for demands of rear metallization for novel n-type silicon based solar cells.

Notes

Acknowledgements

We thank YINLI SOLAR for supporting part manufacturing process of n-Pasha solar cell. This work is supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 61704045).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest for all authors.

References

  1. 1.
    K. Yoshikawa, W. Yoshida, T. Irie, H et al, Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energ Mat Sol C 173, 37–42 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Bullock, M. Hettick, J. Geissbühler et al., Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nature Energy 1, 15031 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Avasthi, S. Lee, Y. Loo, J.C. Sturm, Role of Majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells. Adv Mater 23, 5762–5766 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Yoshikawa, H. Kawasaki, W. Yoshida et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2, 17032 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Yang, K. Weber, Z. Hameiri et al., Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells. Prog. Photovolt. Res. Appl. 25, 896–904 (2017)CrossRefGoogle Scholar
  6. 6.
    P.R. Pudasaini, A.A. Ayon (2013) Low-cost, high-efficiency organic/inorganic hetero-junction hybrid solar cells for next generation photovoltaic device. J. Phys. Conf. Ser. 476:237–250CrossRefGoogle Scholar
  7. 7.
    W. Wu, J. Bao, X. Jia, Z. Liu, L. Cai, B. Liu, J. Song, H. Shen, Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters. Phys. Status Solidi RRL 10, 662–667 (2016)CrossRefGoogle Scholar
  8. 8.
    W. Wu, J. Bao, Z. Liu et al., Multilayer MoOx/Ag/MoOx emitters in dopant-free silicon solar cells. Mater Lett 189, 86–88 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Yu, Y. Fu, L. Zhu et al., Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide. Sol. Energy 159, 704–709 (2018)CrossRefGoogle Scholar
  10. 10.
    K. Ge, J. Chen, B. Chen et al., Low work function intermetallic thin film as a back surface field material for hybrid solar cells. Sol. Energy 162, 397–402 (2018)CrossRefGoogle Scholar
  11. 11.
    S.M. Sze, D.C. Mattis, Physics of semiconductor devices, 3rd edn. (Wiley, New Jersey, 1981)Google Scholar
  12. 12.
    C.R. Crowell, H.B. Shore, E.E. LaBate, Surface state and interface effects in schottky barriers at nType silicon surfaces. J. Appl. Phys. 36, 3843–3850 (1965)CrossRefGoogle Scholar
  13. 13.
    D.A. Yarekha, G. Larrieu, N. Breil et al., UHV fabrication of the ytterbium silicide as potential low Schottky barrier S/D contact material for N-type MOSFET. Ecs Transactions 19, 339–344 (2010)Google Scholar
  14. 14.
    H. Norde, S.P.J. De, F. Dheurle et al., The Schottky-barrier height of the contacts between some rare-earth metals (and silicides) and p-type silicon. Appl. Phys. Lett. 38, 865–866 (1981)CrossRefGoogle Scholar
  15. 15.
    J.E. Baglin, F.M. Dheurle, C.S. Petersson, The formation of silicides from thin films of some rare-earth metals. Appl. Phys. Lett. 36, 594–596 (1980)CrossRefGoogle Scholar
  16. 16.
    T.G. Allen, J. Bullock, P. Zheng et al., Calcium contacts to n-type crystalline silicon solar cells. Prog Photovolt: Res Appl 25, 636–644 (2016)CrossRefGoogle Scholar
  17. 17.
    B. Chen, J. Chen, Y. Shen et al., Magnesium thin film as a doping-free back surface field layer for hybrid solar cells. Appl. Phys. Lett. 110, 133504 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Yang, J. Chen, K. Ge et al., Hafnium Thin Film as a Rear Metallization Scheme for Polymer/Silicon Hybrid Solar Cells. Phys. Status Solidi RRL 12, 1800089 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Wan, C. Samundsett, D. Yan et al., A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells. Appl. Phys. Lett. 109, 024107–014677 (2016)Google Scholar
  20. 20.
    L.J. Geerligs, I.G. Romijn, A.R. Burgers et al. Progress in low-cost n-type silicon solar cell technology. In: IEEE Photovoltaic Specialists Conference, Austin, pp. 001701–001704 (2012)Google Scholar
  21. 21.
    R.C.G. Naber, N. Guillevin, A.R. Burgers et al. (2009) ECN n-type silicon solar cell technology: an industrial process that yields 18.5%, Photovoltaic Specialists Conference. IEEE Pennsylvania, pp. 000990–000992Google Scholar
  22. 22.
    Z. Huang, Y. Mao, G. Lin et al., Low dark current broadband 360–1650 nm ITO/Ag/n-Si Schottky photodetectors. Opt. Express 2018, 26, 5827–5834 (2018)CrossRefGoogle Scholar
  23. 23.
    I.G. Romijn, B. van Aken, J. Anker, P. Barton, Industrial cost effective n-pasha solar cells with> 20% cell efficiency. In: Proc. 28th EUPVSEC, Paris, pp. 736–740 (2013)Google Scholar
  24. 24.
    M.A. Green, A.W. Blakers, J. Zhao, A.M. Milne, A. Wang, X. Dai, Characterization of 23-percent efficient silicon solar cells. IEEE T Electron Dev 37, 331–336 (1990)CrossRefGoogle Scholar
  25. 25.
    S.W. Glunz, J. Nekarda, H. Mäckel, A. Cuevas (2007) Analyzing back contacts of silicon solar cells by Suns–Voc-measurements at high illumination densities. In: 22nd European Photovoltaic Solar Energy Conference, Milan, pp. 849–853Google Scholar
  26. 26.
    A. Radziszewski, T. Skrabka, Hafnium- n type silicon Schottky barriers. Solid State Electron. 28, 707–709 (1985)CrossRefGoogle Scholar
  27. 27.
    Y.C. Yeo, T.J. King, C. Hu, Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology. J. Appl. Phys. 92, 7266–7271 (2002)CrossRefGoogle Scholar
  28. 28.
    V. Misra, G.P. Heuss, H. Zhong, Use of metal-oxide-semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO[sub 2] and ZrO[sub 2]. Appl. Phys. Lett. 78, 4166–4168 (2001)CrossRefGoogle Scholar
  29. 29.
    H.-C. Wen, P. Majhi, K. Choi et al., Decoupling the Fermi-level pinning effect and intrinsic limitations on p-type effective work function metal electrodes. Microelectron. Eng. 85, 2–8 (2008)CrossRefGoogle Scholar
  30. 30.
    Y. Yee-Chia, Effects of High-k Gate Dielectric Materials on Metal and Silicon Gate Workfunctions. IEEE electron device letters 23, 342–344 (2002)CrossRefGoogle Scholar
  31. 31.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  32. 32.
    L.F. Wagner, R.W. Young, A. Sugerman, A note on the correlation between the Schottky-diode barrier height and the ideality factor as determined from I–V measurements. IEEE Electr Device L 4, 320–322 (1983)CrossRefGoogle Scholar
  33. 33.
    H. Altuntas, A. Bengi, T. Asar, U. Aydemir, B. Sarıkavak, Y. Ozen, Ş Altındal, S. Ozcelik, Interface state density analyzing of Au/TiO2(rutile)/n-Si Schottky barrier diode. Surf Interface Anal 42, 1257–1260 (2010)CrossRefGoogle Scholar
  34. 34.
    F.J.J. Pern, R. Noufi, Characterization of damp heat degradation of CuInGaSe2 solar cell components and devices by (electrochemical) impedance spectroscopy. SPIE 8112, 81120S (2011)Google Scholar
  35. 35.
    J. Panigrahi, R. Vandana, N. Singh, Batra et al., Impedance spectroscopy of crystalline silicon solar cell: Observation of negative capacitance. Sol. Energy 136, 412–420 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Pysch, A. Mette, S.W. Glunz, A review and comparison of different methods to determine the series resistance of solar cells. Sol Energ Mat Sol C 91, 1698–1706 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and TechnologyHebei UniversityBaodingChina
  2. 2.Major of Photovoltaic Engineering, Institute of Information EngineeringQuzhou College of TechnologyQuzhouChina
  3. 3.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations