Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 19614–19619 | Cite as

Facile hydrothermally synthesis of hexagon tin disulfide nanosheets for high-performance photocatalytic hydrogen generation

  • Yiwei Hu
  • Xinhang Chen
  • Xiaohui Ren
  • Zongyu Huang
  • Xiang Qi
  • Jianxin Zhong
Review
  • 91 Downloads

Abstract

Tin disulfide (SnS2) has been attracted intensive attention in the field of photoelectric conversion due to its appropriate band gap and glorious electronic mobility. The hexagon SnS2 nanosheets has been successfully integrated through a facile one-pot hydrothermal method. SEM images, Raman spectra, atomic force microscope and X-ray diffraction patterns are measured to carry out to investigate the morphologies and microstructures of SnS2 nanosheetsm, confirming a good crystallized SnS2. Then, the photochemical activity of as-prepared SnS2 nanosheets were tested in the electrolyte of Na2SO4. Photoelectrochemical tests demonstrate that the photocurrent density of as-prepared hexagon SnS2 nanosheets (1.66 µA/cm2 at a light intensity of 140 mW/cm2) is hugely increased with increasing light intensity. Furthermore, after 50 cycles, the photocurrent density does not change significantly, indicating that the as-prepared SnS2 nanosheets possesses superior stabilities. The outstanding photocatalytic performances of SnS2 nanosheets are not only resulted from its huge specific surface area, which can harvest more light and provide more active sites, but also attributed to its superior charge mobility, which can facilitate the separation photogenerated electron–hole pairs and the charge transfer between SnS2 nanosheets and the electrode. The most important is that our work reveals the hexagonal SnS2 nanosheets not only possess superior photoelectrochemical properties, but also have great potential applications in energy conversion and photodetector fields.

Notes

Acknowledgements

This work was supported by the Science and Technology Program of Xiangtan (no. CXY-ZD20172002) as well as the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R91).

References

  1. 1.
    F. Zhang, J. Zhu, D. Zhang, U. Schwingenschlögl, HN Alshareef, Nano Lett. 17, 1302–1311 (2017)CrossRefGoogle Scholar
  2. 2.
    V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, E. Bucher, Appl. Phys. Lett. 84, 3301–3303 (2004)CrossRefGoogle Scholar
  3. 3.
    W.-F. Chen, C.-H. Wang, K. Sasaki et al., Energy Environ. Sci. 6, 943–951 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Hosseini, P. Kar, L.-H. Hsieh et al., J. Nanosci. Nanotechnol. 17, 5119–5123 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Huang, X. Zhan, K. Xu et al., Appl. Phys. Lett. 108, 013101 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Chen, X.J. Wu, L. Yin et al., Angew. Chem. 54, 1210 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Kar, S. Farsinezhad, X. Zhang, K. Shankar, Nanoscale 6, 14305–14318 (2014)CrossRefGoogle Scholar
  8. 8.
    W. Septina, S. Ikeda, T. Harada, T. Minegishi, K. Domen, M. Matsumura, Chem. Commun. 50, 8941–8943 (2014)CrossRefGoogle Scholar
  9. 9.
    Z.-X. Chang, W.-H. Zhou, D.-X. Kou, Z.-J. Zhou, S.-X. Wu, Chem. Commun. 50, 12726–12729 (2014)CrossRefGoogle Scholar
  10. 10.
    L.A. Burton, T.J. Whittles, D. Hesp et al., J. Mater. Chem. A 4, 1312–1318 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Chao, Z. Xie, X. Duan et al., CrystEngComm 14, 3163–3168 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Anitha, M. Anitha, J.R. Mohamed, S. Valanarasu, L. Amalraj, J. Mater. Sci. Mater. Electron. 29, 11529–11539 (2018)CrossRefGoogle Scholar
  13. 13.
    X. Ren, J. Zhou, X. Qi et al., Adv. Energy Mater. 7, 1700396 (2017)CrossRefGoogle Scholar
  14. 14.
    D. De, J. Manongdo, S. See, V. Zhang, A. Guloy, H. Peng, Nanotechnology 24, 025202 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Su, V.G. Hadjiev, P.E. Loya et al., Nano Lett. 15, 506–513 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Song, S. Li, L. Gao et al., Nanoscale 5, 9666–9670 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Chen, Z. Huang, X. Ren et al., ChemNanoMat 4, 373–378 (2018)CrossRefGoogle Scholar
  18. 18.
    Q. Li, A. Wei, Z. Guo, J. Liu, Y. Zhao, Z. Xiao, J. Mater. Sci. Mater. Electron. 29, 16057–16063 (2018)CrossRefGoogle Scholar
  19. 19.
    Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, Sep. Purif. Technol. 81, 101–107 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Liu, Y. Su, P. Chen, Y. Wang, J. Mol. Catal. A Chem. 378, 285–292 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Yu, C.-Y. Xu, F.-X. Ma, S.-P. Hu, Y.-W. Zhang, L. Zhen, ACS Appl. Mater. Interfaces 6, 22370–22377 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Park, J. Park, R. Selvaraj, Y. Kim, J. Ind. Eng. Chem. 31, 269–275 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Tang, X. Qi, Z. Zhang et al., Ceram. Int. 42, 6572–6580 (2016)CrossRefGoogle Scholar
  24. 24.
    Y. Hu, X. Ren, H. Qiao, Z. Huang, X. Qi, J. Zhong, Solar Energy 157, 905–910 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Han, L. Ren, L. Gong et al., ACS Sustain. Chem. Eng. 2, 741–748 (2014)CrossRefGoogle Scholar
  26. 26.
    W. Han, L. Ren, X. Qi et al., Appl. Surf. Sci. 299, 12–18 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, XM Meng, Adv. Funct. Mater. 25, 4255–4261 (2015)CrossRefGoogle Scholar
  28. 28.
    G. Su, V.G. Hadjiev, P.E. Loya et al., Nano Lett. 15, 506 (2015)CrossRefGoogle Scholar
  29. CR29.
    X. Zhou, Q. Zhang, L. Gan, H. Li, T. Zhai, Adv. Funct. Mater. 26, 4405–4413 (2016)CrossRefGoogle Scholar
  30. 30.
    K.V. Zaitsev, V.A. Tafeenko, Y.F. Oprunenko et al., Chem. Asian J. 12, 1240–1249 (2017)CrossRefGoogle Scholar
  31. 31.
    Q.X. Gao, X.F. Wang, Y.R. Tao, XC Wu, Sci. Adv. Mater. 4, 327–331 (2012)CrossRefGoogle Scholar
  32. 32.
    C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, C. Pan, ACS Appl. Mater. Interfaces. 9, 23265–23286 (2017)CrossRefGoogle Scholar
  33. 33.
    G. Domingo, R.S. Itoga, C.R. Kannewurf, Phys. Rev. 143, 536–541 (1966)CrossRefGoogle Scholar
  34. 34.
    M. Kozak, Thin Solid Films 121, 227–232(1984)CrossRefGoogle Scholar
  35. 35.
    S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Chem. Mater. 20, 6784–6791 (2008)CrossRefGoogle Scholar
  36. 36.
    Z. Li, H. Qiao, Z. Guo et al., Adv. Funct. Mater. 28, 1705237 (2018)CrossRefGoogle Scholar
  37. 37.
    X. Ren, Z. Li, Z. Huang et al., Adv. Funct. Mater. 27, 1606834 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Qiao, Z. Huang, X. Ren et al., J. Mater. Sci. 53, 4371–4377 (2018)CrossRefGoogle Scholar
  39. 39.
    T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, VR Dhanak, Chem. Mater. 28, 3718–3726 (2016)CrossRefGoogle Scholar
  40. 40.
    Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575–6578 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yiwei Hu
    • 1
  • Xinhang Chen
    • 1
  • Xiaohui Ren
    • 1
  • Zongyu Huang
    • 1
  • Xiang Qi
    • 1
  • Jianxin Zhong
    • 1
  1. 1.Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and OptoelectronicXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations