Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20280–20301 | Cite as

Carbon-nitride-based core–shell nanomaterials: synthesis and applications

  • Qiang Guo
  • Yongli Wan
  • Bingbing Hu
  • Xitao Wang
Article
  • 93 Downloads

Abstract

As a new type of photo-catalyst, graphitic carbon-nitride-based core–shell nanocomposites (nanomaterial@g-C3N4) have shown promising prospect for various applications in the photo-catalysis and other related fields when compared to bare graphitic carbon nitride (g-C3N4) due to their unique physicochemical, optical and electrical properties resulting from the synergistic effect between core and shell, and also the protection of g-C3N4 shell to inhabit the reaggregation, photo-corrosion, oxidation or dissolution of nanocore. In this review, we have systematically summarized the preparation of g-C3N4-based composites, including physical adsorption, hydrothermal growth, thermal vapor condensation and the newly-developed precursor wrapping method according to recent researches. The advantages of g-C3N4-based core–shell composites including their physicochemical properties, stability, optical and electronic properties are highlighted. Various applications are addressed, such as photo-catalytic hydrogen production from water splitting, photo-catalytic degradation of organic pollutants, photo-catalytic reduction of carbon dioxide, and photo-electric anti-corrosion. Various strategies for designing and constructing highly effective g-C3N4-based core–shell composites are also thoroughly proposed, including band-gap and lattice match, optimization of the preparation method of nanocomposites and nanocore characteristics. This review can provide new directions in exploring g-C3N4-based nanomaterials for the applications in photo-catalysis or related fields as well as novel fabrication methods.

Notes

Acknowledgements

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 21276190 and 20806059).

References

  1. 1.
    W. Jiang, W. Luo, J. Wang, M. Zhang, Y. Zhu, J. Photochem. Photobiol. C 28, 87–115 (2016)Google Scholar
  2. 2.
    T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature. 277, 637–638 (1979)Google Scholar
  3. 3.
    D. Chen, K. Wang, D. Xiang, R. Zong, W. Yao, Y. Zhu, Appl. Catal. B Environ. 147, 554–561 (2014)Google Scholar
  4. 4.
    S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Energy Environ. Sci. 4, 1781 (2011)Google Scholar
  5. 5.
    J. Yu, Y. Hai, M. Jaroniec, J. Colloid Interface Sci. 357, 223–228 (2011)Google Scholar
  6. 6.
    D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, E. Tondello, ChemSusChem. 2, 230–233 (2009)Google Scholar
  7. 7.
    P.-W. Pan, Y.-W. Chen, Catal. Commun. 8, 1546–1549 (2007)Google Scholar
  8. 8.
    S. Ouyang, H. Tong, N. Umezawa, J. Cao, P. Li, Y. Bi, Y. Zhang, J. Ye, J. Am. Chem. Soc. 134, 1974–1977 (2012)Google Scholar
  9. 9.
    Y. Yamada, K. Yano, D. Hong, S. Fukuzumi, Phys. Chem. Chem. Phys. 14, 5753–5760 (2012)Google Scholar
  10. 10.
    J. Zhang, S. Liu, J. Yu, M. Jaroniec, J. Mater. Chem. 21, 14655 (2011)Google Scholar
  11. 11.
    Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878–10884 (2011)Google Scholar
  12. 12.
    M. Abou Asi, L. Zhu, C. He, V.K. Sharma, D. Shu, S. Li, J. Yang, Y. Xiong, Catal. Today. 216, 268–275 (2013)Google Scholar
  13. 13.
    N. Ahmed, M. Morikawa, Y. Izumi, Catal Today. 185, 263–269 (2012)Google Scholar
  14. 14.
    M. Morikawa, N. Ahmed, Y. Yoshida, Y. Izumi, Appl. Catal. B Environ. 144, 561–569 (2014)Google Scholar
  15. 15.
    P. Mazierski, M. Nischk, M. Gołkowska, W. Lisowski, M. Gazda, M.J. Winiarski, T. Klimczuk, A. Zaleska-Medynska, Appl. Catal. B Environ. 196, 77–88 (2016)Google Scholar
  16. 16.
    G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, J. Mater. Chem. 20, 5301 (2010)Google Scholar
  17. 17.
    J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, ACS Appl. Mater. Interfaces. 4, 3084–3090 (2012)Google Scholar
  18. 18.
    F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao, K. Jiang, CrystEngComm. 14, 3615 (2012)Google Scholar
  19. 19.
    S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Nanoscale. 6, 4830–4842 (2014)Google Scholar
  20. 20.
    R. Abe, J. Photochem. Photobiol. C 11, 179–209 (2010)Google Scholar
  21. 21.
    X. Fang, J. Song, T. Pu, C. Wang, C. Yin, J. Wang, S. Kang, H. Shi, Y. Zuo, Y. Wang, L. Cui, Int. J. Hydrog. Energy. 42, 28183–28192 (2017)Google Scholar
  22. 22.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)Google Scholar
  23. 23.
    S. Cao, J. Yu, J. Phys. Chem. Lett. 5, 2101–2107 (2014)Google Scholar
  24. 24.
    P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Adv. Funct. Mater. 22, 4763–4770 (2012)Google Scholar
  25. 25.
    J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Catal. Sci. Technol. 3, 1253 (2013)Google Scholar
  26. 26.
    K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, Phys. Chem. 113, 4940–4947 (2009)Google Scholar
  27. 27.
    A. Fujishima, X. Zhang, C. R. Chim. 9, 750–760 (2006)Google Scholar
  28. 28.
    S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150–2176 (2015)Google Scholar
  29. 29.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir. 26, 3894–3901 (2010)Google Scholar
  30. 30.
    L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Appl. Catal. B Environ. 142–143, 1–7 (2013)Google Scholar
  31. 31.
    J. Sun, J. Xu, A. Grafmueller, X. Huang, C. Liedel, G. Algara-Siller, M. Willinger, C. Yang, Y. Fu, X. Wang, M. Shalom, Appl. Catal. B Environ. 205, 1–10 (2017)Google Scholar
  32. 32.
    L. Huang, H. Xu, R. Zhang, X. Cheng, J. Xia, Y. Xu, H. Li, Appl. Surf. Sci. 283, 25–32 (2013)Google Scholar
  33. 33.
    Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, Appl. Catal. B Environ. 180, 663–673 (2016)Google Scholar
  34. 34.
    H. Shen, X. Zhao, L. Duan, R. Liu, H. Li, Mater. Sci. Eng. B. 218, 23–30 (2017)Google Scholar
  35. 35.
    Y. Hou, Y. Gan, Z. Yu, X. Chen, L. Qian, B. Zhang, L. Huang, J. Huang, J. Power Sour. 371, 26–34 (2017)Google Scholar
  36. 36.
    J. Lin, Z. Pan, X. Wang, ACS Sustain. Chem. Eng. 2, 353–358 (2014)Google Scholar
  37. 37.
    J. Zhang, M. Zhang, R.Q. Sun, X. Wang, Angew Chem. Int. Ed. Engl. 51, 10145–10149 (2012)Google Scholar
  38. 38.
    Q. Huang, J. Yu, S. Cao, C. Cui, B. Cheng, Appl. Surf. Sci. 358, 350–355 (2015)Google Scholar
  39. 39.
    G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem. 22, 8083 (2012)Google Scholar
  40. 40.
    Z. Zhao, Y. Sun, F. Dong, Nanoscale. 7, 15–37 (2015)Google Scholar
  41. 41.
    K. Maeda, R. Kuriki, M. Zhang, X. Wang, O. Ishitani, J. Mater. Chem. A. 2, 15146–15151 (2014)Google Scholar
  42. 42.
    Y. Zheng, L. Lin, B. Wang, X. Wang, Angew Chem Int. Ed. Engl. 54, 12868–12884 (2015)Google Scholar
  43. 43.
    M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Appl. Catal. B Environ. 164, 77–81 (2015)Google Scholar
  44. 44.
    L. Zhao, L. Zhang, H. Lin, Q. Nong, M. Cui, Y. Wu, Y. He, J. Hazardous Mater. 299, 333–342 (2015)Google Scholar
  45. 45.
    Y. Sun, J. Jiang, Y. Liu, S. Wu, J. Zou, Appl. Surf. Sci. 430, 362–370 (2018)Google Scholar
  46. 46.
    X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal. B Environ. 147, 82–91 (2014)Google Scholar
  47. 47.
    H. Yan, H. Yang, J. Alloys Compd. 509, L26–L29 (2011)Google Scholar
  48. 48.
    R.C. Pawar, Y. Son, J. Kim, S.H. Ahn, C.S. Lee, Curr. Appl. Phys. 16, 101–108 (2016)Google Scholar
  49. 49.
    Q. Wang, Y. Shi, Z. Du, J. He, J. Zhong, L. Zhao, H. She, G. Liu, B. Su, Eur. J. Inorgan. Chem. 2015, 4108–4115 (2015)Google Scholar
  50. 50.
    F. Di Quarto, C. Sunseri, S. Piazza, M.C. Romano, Phys. Chem. 101, 2519–2525 (1997)Google Scholar
  51. 51.
    M. Sun, Z. Chen, Y. Bu, J. Alloys Compd. 618, 734–741 (2015)Google Scholar
  52. 52.
    S. Ye, R. Wang, M.-Z. Wu, Y.-P. Yuan, Appl. Surf. Sci. 358, 15–27 (2015)Google Scholar
  53. 53.
    J. Tian, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Anal. Chem. 85, 5595–5599 (2013)Google Scholar
  54. 54.
    N. Cheng, J. Tian, Q. Liu, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X. Sun, ACS Appl. Mater. Interfaces. 5, 6815–6819 (2013)Google Scholar
  55. 55.
    J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, X. Sun, Nanoscale. 5, 8921–8924 (2013)Google Scholar
  56. 56.
    C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater. 22, 1518–1524 (2012)Google Scholar
  57. 57.
    S. Duan, G. Han, Y. Su, X. Zhang, Y. Liu, X. Wu, B. Li, Langmuir. 32, 6272–6281 (2016)Google Scholar
  58. 58.
    M. Li, L. Zhang, X. Fan, M. Wu, M. Wang, R. Cheng, L. Zhang, H. Yao, J. Shi, Appl. Catal. B Environ. 201, 629–635 (2017)Google Scholar
  59. 59.
    L. Liu, Y. Qi, J. Hu, W. An, S. Lin, Y. Liang, W. Cui, Mater. Lett. 158, 278–281 (2015)Google Scholar
  60. 60.
    Y. Li, X. Wei, H. Li, R. Wang, J. Feng, H. Yun, A. Zhou, RSC Adv. 5, 14074–14080 (2015)Google Scholar
  61. 61.
    L. Liu, Y. Qi, J. Yang, W. Cui, X. Li, Z. Zhang, Appl. Surf. Sci. 358, 319–327 (2015)Google Scholar
  62. 62.
    R. Chen, J. Zhang, Y. Wang, X. Chen, J.A. Zapien, C.S. Lee, Nanoscale. 7, 17299–17305 (2015)Google Scholar
  63. 63.
    Y. Bu, Z. Chen, RSC Adv. 4, 45397–45406 (2014)Google Scholar
  64. 64.
    L. Liu, Y. Qi, J. Lu, S. Lin, W. An, J. Hu, Y. Liang, W. Cui, RSC Adv. 5, 99339–99346 (2015)Google Scholar
  65. 65.
    L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, W. Cui, Appl. Catal. B Environ. 183, 133–141 (2016)Google Scholar
  66. 66.
    Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, J. Hazard. Mater. 297, 224–233 (2015)Google Scholar
  67. 67.
    J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, J. Yu, ACS Appl. Mater. Interfaces. 5, 10317–10324 (2013)Google Scholar
  68. 68.
    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18–21 (2013)Google Scholar
  69. 69.
    L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang, T. Wang, J. Ye, Small. 12, 4431–4439 (2016)Google Scholar
  70. 70.
    W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Nanoscale. 8, 3711–3719 (2016)Google Scholar
  71. 71.
    Z. Xing, Y. Chen, C. Liu, J. Yang, J. Xu, Y. Situ, H. Huang, J. Alloys Compd. 708, 853–861 (2017)Google Scholar
  72. 72.
    B. Lin, H. An, X. Yan, T. Zhang, J. Wei, G. Yang, Appl. Catal. B Environ. 210, 173–183 (2017)Google Scholar
  73. 73.
    L. Liu, Y. Qi, J. Hu, Y. Liang, W. Cui, Appl. Surf. Sci. 351, 1146–1154 (2015)Google Scholar
  74. 74.
    L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Appl. Surf. Sci. 430, 263–272 (2018)Google Scholar
  75. 75.
    A.P. Singh, P. Arora, S. Basu, B.R. Mehta, Int. J. Hydrog. Energy. 41, 5617–5628 (2016)Google Scholar
  76. 76.
    L. Wang, F. Zhao, Q. Han, C. Hu, L. Lv, N. Chen, L. Qu, Nanoscale. 7, 9694–9702 (2015)Google Scholar
  77. 77.
    S. Gholizadeh Khasevani, N. Mohaghegh, M.R. Gholami, New J. Chem. 41, 10390–10396 (2017)Google Scholar
  78. 78.
    T.J. Park, R.C. Pawar, S. Kang, C.S. Lee, RSC Adv. 6, 89944–89952 (2016)Google Scholar
  79. 79.
    B. Lin, C. Xue, X. Yan, G. Yang, G. Yang, B. Yang, Appl. Surf. Sci. 357, 346–355 (2015)Google Scholar
  80. 80.
    Y. Zhang, R. Wen, D. Guo, H. Guo, J. Chen, Z. Zheng, Appl. Organomet. Chem. 30, 160–166 (2016)Google Scholar
  81. 81.
    X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2, 1596–1606 (2012)Google Scholar
  82. 82.
    J. Liu, J. Huang, H. Zhou, M. Antonietti, ACS Appl. Mater. Interfaces. 6, 8434–8440 (2014)Google Scholar
  83. 83.
    J. Huang, M. Antonietti, J. Liu, J. Mater. Chem. A. 2, 7686 (2014)Google Scholar
  84. 84.
    S. Kang, H. Qin, L. Zhang, Y. Huang, X. Bai, X. Li, D. Sun, Y. Wang, L. Cui, Sci Rep. 7, 44338 (2017)Google Scholar
  85. 85.
    Z. Chen, G. Ma, Z. Chen, Y. Zhang, Z. Zhang, J. Gao, Q. Meng, M. Yuan, X. Wang, G. Liu, Zhou, J.-m. Appl. Surf. Sci. 396, 609–615 (2017)Google Scholar
  86. 86.
    J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 17, 3647–3652 (2015)Google Scholar
  87. 87.
    X. Fan, T. Wang, B. Gao, H. Gong, H. Xue, H. Guo, L. Song, W. Xia, X. Huang, J. He, Langmuir. 32, 13322–13332 (2016)Google Scholar
  88. 88.
    Y. Zou, J.-W. Shi, D. Ma, Z. Fan, L. Lu, C. Niu, Chem. Eng. J. 322, 435–444 (2017)Google Scholar
  89. 89.
    J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 16, 17627–17633 (2014)Google Scholar
  90. 90.
    L. Liu, P. Hu, W. Cui, X. Li, Z. Zhang, Int. J. Hydrog. Energy. 42, 17435–17445 (2017)Google Scholar
  91. 91.
    Z. Yan, Z. Sun, X. Liu, H. Jia, P. Du, Nanoscale. 8, 4748–4756 (2016)Google Scholar
  92. 92.
    P. Wang, N. Lu, Y. Su, N. Liu, H. Yu, J. Li, Y. Wu, Appl. Surf. Sci. 423, 197–204 (2017)Google Scholar
  93. 93.
    M. Ning, Z. Chen, L. Li, Q. Meng, Z. Chen, Y. Zhang, M. Jin, Z. Zhang, M. Yuan, X. Wang, G. Zhou, Electrochem. Commun. 87, 13–17 (2018)Google Scholar
  94. 94.
    L. Ma, H. Fan, K. Fu, S. Lei, Q. Hu, H. Huang, G. He, ACS Sustain. Chem. Eng. 5, 7093–7103 (2017)Google Scholar
  95. 95.
    D. Tang, G. Zhang, Appl. Surf. Sci. 391, 415–422 (2017)Google Scholar
  96. 96.
    Y. Hong, C. Li, B. Yin, D. Li, Z. Zhang, B. Mao, W. Fan, W. Gu, W. Shi, Chem. Eng. J. 338, 137–146 (2018)Google Scholar
  97. 97.
    Z. Zhang, M. Wang, W. Cui, H. Sui, RSC Adv. 7, 8167–8177 (2017)Google Scholar
  98. 98.
    C. Liu, C. Zhang, J. Wang, Q. Xu, X. Chen, C. Wang, X. Xi, W. Hou, Mater. Lett. 217, 235–238 (2018)Google Scholar
  99. 99.
    Y. He, L. Zhang, B. Teng, M. Fan, Environ. Sci. Technol. 49, 649–656 (2015)Google Scholar
  100. 100.
    W. Yu, D. Xu, T. Peng, J. Mater. Chem. A. 3, 19936–19947 (2015)Google Scholar
  101. 101.
    J. Hao, S. Zhang, F. Ren, Z. Wang, J. Lei, X. Wang, T. Cheng, L. Li, J. Colloid Interface Sci. 508, 419–425 (2017)Google Scholar
  102. 102.
    S. Liu, L. Ma, H. Zhang, C. Ma, Mater. Sci. Eng. B. 207, 33–38 (2016)Google Scholar
  103. 103.
    Y. Huang, Y. Wang, Y. Bi, J. Jin, M.F. Ehsan, M. Fu, T. He, RSC Adv. 5, 33254–33261 (2015)Google Scholar
  104. 104.
    C. Xin, M. Hu, K. Wang, X. Wang, Langmuir. 33, 6667–6676 (2017)Google Scholar
  105. 105.
    S. Zhu, S. Liang, J. Bi, M. Liu, L. Zhou, L. Wu, X. Wang, Green Chem. 18, 1355–1363 (2016)Google Scholar
  106. 106.
    Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Appl. Catal. B Environ. 220, 337–347 (2018)Google Scholar
  107. 107.
    D. Lu, H. Wang, Q. Shen, K.K. Kondamareddy, D. Neena, J. Phys. Chem. Solids. 106, 76–81 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qiang Guo
    • 1
  • Yongli Wan
    • 1
  • Bingbing Hu
    • 1
  • Xitao Wang
    • 1
  1. 1.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations