Advertisement

Structural and electric response of ITO/In2O3 transparent thin film thermocouples derived from RF sputtering at room temperature

  • Junzhan Zhang
  • Weichao Wang
  • Dan Liu
  • Ying Zhang
  • Peng Shi
Article
  • 8 Downloads

Abstract

Transparent thin film thermocouples have unique characteristics that it can be applied when permit minimal optical interference at in-situ temperature measurement. ITO/In2O3 thin film thermocouples were prepared on fused quartz glasses at room temperature by RF magnetron sputtering. For contrast, ITO thin films post-annealed at different temperatures were investigated accordingly. All films showed good conductivities, smooth surface morphology and high transmission, indicating negligible affection of the post-annealing temperature. The as-deposited ITO film has a Seebeck coefficient of 84.4 µV ºC−1. The thermoelectric voltage of 13.6 mV and significantly lower drift rate of 2.39 °C h−1 were obtained at 190 °C for ITO/In2O3 thin film thermocouples without any heat treatment. This makes the ITO/In2O3 transparent thin film thermocouples great potential as a promising temperature sensor.

References

  1. 1.
    Z.K. Zhang, B. Tian, Q.Y. Yu, P. Shi, Q.J. Lin, N. Zhao, W.X. Jing, Z.D. Jiang, Range analysis of thermal stress and optimal design for Tungsten-Rhenium thin film thermocouples based on ceramic substrates. Sensors 17, 857–869 (2017)CrossRefGoogle Scholar
  2. 2.
    Y.X. Cui, D.S. Yang, Q.Y. Zeng, B.Y. Sun, Fabrication and characterization of NiCr/NiSi functional thin films on temperature measurement of cutter sensor. Key Eng. Mater. 431–432, 535–538 (2010)CrossRefGoogle Scholar
  3. 3.
    AIAA Development of thin film ceramic thermocouples for high temperature environments. In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Florida (2004)Google Scholar
  4. 4.
    J.D. Wrbanek, G.C. Fralick Thin film physical sensor instrumentation research and development at NASA Glenn Research Center. NASA/TM (2006)Google Scholar
  5. 5.
    J.G. Kang, J.S. Park, K.B. Park, J. Shin, E.A. Lee, S. Noh, H.J. Lee, Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor. Micro Nano Syst. Lett. 5, 26–30 (2017)CrossRefGoogle Scholar
  6. 6.
    H.X. Liu, W. Sun, S. Xu, An extremely simple thermocouple made of a single layer of metal. Adv. Mater. 24, 3275–3279 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Long, A.G. Klock, C. Zhou, S.O. Memik IOTA: towards an integrated on-chip thermocouple array. In: International workshop on thermal investigations of ICS and systems, Barcelona (2012)Google Scholar
  8. 8.
    D. Werschmoeller, X. Li, Measurement of tool internal temperatures in the tool-chip contact region by embedded micro thin film thermocouples. J. Manuf. Process. 13, 147–152 (2011)CrossRefGoogle Scholar
  9. 9.
    Q.Y. Zeng, T. Hong, L. Chen, Y.X. Cui, Magnetron sputtering of NiCr/NiSi thin-film thermocouple sensor for temperature measurement when machining chemical explosive material. Key Eng. Mater. 467–469, 134–139 (2011)CrossRefGoogle Scholar
  10. 10.
    X.Y. Huo, H.X. Liu, Y.R. Liang, M.Q. Fu, W.Q. Sun, Q. Chen, S.Y. Xu, A nano-stripe based sensor for temperature measurement at the submicrometer and nano scales. Small 10, 3869–3875 (2014)CrossRefGoogle Scholar
  11. 11.
    X.H. Jin, B.H. Ma, T. Qiu, J.J. Deng (2017) ITO thin film thermocouple for transient high temperature measurement in scramjet combustor. In: International conference on solid-state sensors, actuators and microsystems, TaiwanGoogle Scholar
  12. 12.
    M.E. Bourg, V.D.V. We, A.G. Güell, A.G. Grüell, R.M. Penner, Electrodeposited submicron thermocouples with microsecond response times. Nano Lett. 7, 3208–3213 (2007)CrossRefGoogle Scholar
  13. 13.
    K.G. Kreider Thin film transparent thermocouples. In: International conference on solid-state sensors and actuators, 1991. Digest of technical papers, transducers, San Francisco (1992)Google Scholar
  14. 14.
    S.R.S. Kumar, S. Kasiviswanathan, Transparent ITO-Mn:ITO thin-film thermocouples. IEEE Sens. J. 9, 809–813 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal. Biochem. 548, 53–59 (2018)CrossRefGoogle Scholar
  16. 16.
    H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2017)CrossRefGoogle Scholar
  17. 17.
    H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang, Th Q1 e thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 44, 1018–1021 (2013)CrossRefGoogle Scholar
  18. 18.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped NiTiO3: auto-combustion synthesis, characterization and photovoltaic measurements. S. Afr. J. Chem. 70, 44–48 (2017)Google Scholar
  19. 19.
    R.M. Sandfort, E.J. Charlson, Calibration curves for gold-nickel and silver-nickel thin film thermocouples. Solid State Electron. 11, 635–637 (1968)CrossRefGoogle Scholar
  20. 20.
    M. Gierczak, J. Prazmowska-Czajka, A. Dziedzic, Thermoelectric mixed thick/thin film microgenerators based on constantan/silver. Materials 11, 115–123 (2018)CrossRefGoogle Scholar
  21. 21.
    K.G. Kreider, M. Yust (1990) Transparent thin film thermocouple. US Patent 4969956Google Scholar
  22. 22.
    M. Yust, K.G. Kreider, Transparent thin film thermocouple. Thin Solid Films 176, 73–78 (1989)CrossRefGoogle Scholar
  23. 23.
    O.J. Gregory, M. Amani, I.M. Tougas, A.J. Drehman, Stability and microstructure of indium tin oxynitride thin films. J. Am. Ceram. Soc. 95, 705–710 (2012)CrossRefGoogle Scholar
  24. 24.
    X.H. Zhao, K. Yang, Y.R. Wang, Y. Chen, H.C. Jiang, Stability and thermoelectric properties of ITON:Pt thin film thermocouples. J. Mater. Sci. Mater. Electron. 27, 1725–1729 (2016)CrossRefGoogle Scholar
  25. 25.
    Y.T. Liu, W. Ren, P. Shi, D. Liu, Y.J. Zhang, M. Liu, Z.G. Ye, W.X. Jing, B. Tian, Z.D. Jiang, A highly thermostable In2O3/ITO thin film thermocouple prepared via screen printing for high temperature measurements. Sensors 18, 958–966 (2018)CrossRefGoogle Scholar
  26. 26.
    N. Martiny, A. Rheinfeld, J. Geder, Y.X. Wang, W. Kraus, A. Jossen, Development of an All Kapton-Based thin-film thermocouple matrix for in situ temperature measurement in a lithium ion pouch cell. IEEE Sens. J. 14, 3377–3384 (2014)CrossRefGoogle Scholar
  27. 27.
    M.S.K. Mutyala, J.Z. Zhao, J.Y. Li, H.G. Pan, C. Yuan, X.C. Li, In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples. J. Power Sour. 260, 43–49 (2014)CrossRefGoogle Scholar
  28. 28.
    A.E. Hichou, A. Kachouane, J.L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, A. Bougrine, Effect of substrate temperature on electrical, structural, optical and cathodoluminescent properties of In2O3-Sn thin films prepared by spray pyrolysis. Thin Solid Films 458, 263–268 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Kerkache, A. Layadi, A. Mosser, Effect of oxygen partial pressure on the structural and optical properties of dc sputtered ITO thin films. J. Alloy. Compd. 485, 46–50 (2009)CrossRefGoogle Scholar
  30. 30.
    L.J. Meng, E. Crossan, A. Voronov, F. Placido, Indium-tin-oxide thin film prepared by microwave-enhanced d.c. reactive magnetron sputtering for telecommunication wavelengths. Thin Solid Films 422, 80–86 (2002)CrossRefGoogle Scholar
  31. 31.
    P. Thilakan, J. Kumar, Studies on the preferred orientation changes and its influenced properties on ITO thin films. Vacuum 48, 463–466 (1997)CrossRefGoogle Scholar
  32. 32.
    Y. Shigesato, S. Takaki, T. Haranoh, Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys. 71, 3356–3364 (1992)CrossRefGoogle Scholar
  33. 33.
    Y. Shigesato, D.C. Paine, A microstructural study of low resistivity tin-doped indium oxide prepared by dc magnetron sputtering. Thin Solid Films 238, 44–50 (1994)CrossRefGoogle Scholar
  34. 34.
    L.J. Meng, A. Macarico, R. Martins, Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering. Vacuum 46, 673–680 (1995)CrossRefGoogle Scholar
  35. 35.
    E. Terzini, P. Thilakan, C. Minarini, Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature. Mater. Sci. Eng. B 77, 110–114 (2000)CrossRefGoogle Scholar
  36. 36.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadid, F. Ahmadie, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4, nanoparticles and YbVO4/NiWO4, nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  37. 37.
    Y.L. Hu, X.G. Diao, C. Wang, W.C. Hao, T.M. Wang, Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum 75, 183–188 (2004)CrossRefGoogle Scholar
  38. 38.
    L. Gupta, A. Mansingh, P.K. Srivastava, Band gap narrowing and the band structure of tin-doped indium oxide films. Thin Solid Films 176, 33–44 (1989)CrossRefGoogle Scholar
  39. 39.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadid, A. Pourmasouda, Ultrasound-assisted synthesis of YbVO4, nanostructure and YbVO4/CuWO4, nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  40. 40.
    N. Sethupathi, P. Thirunavukkarasu, V.S. Vidhya, R. Thangamuthu, G.V.M. Kiruthika, K. Perumal, H.C. Bajaj, M. Jayachandran, Deposition and optoelectronic properties of ITO (In2O3:Sn) thin films by Jet nebulizer spray (JNS) pyrolysis technique. J. Mater. Sci. Mater. Electron. 23, 1087–1093 (2012)CrossRefGoogle Scholar
  41. 41.
    I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, L. Engström, Band-gap widening in heavily Sn-doped In2O3. Phys. Rev. B 30, 3240–3249 (1984)CrossRefGoogle Scholar
  42. 42.
    C. Guillén, J. Herrero, Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature. Vacuum 80, 615–620 (2006)CrossRefGoogle Scholar
  43. 43.
    H. Koseoglu, F. Turkoglu, M. Kurt, M.D. Yaman, F.G. Akca, G. Aygun, L. Ozyuzer, Improvement of optical and electrical properties of ITO thin films by electro-annealing. Vacuum 120, 8–13 (2015)CrossRefGoogle Scholar
  44. 44.
    I.M. Tougas, M. Amani, O.J. Gregory, Metallic and ceramic thin film thermocouples for gas turbine engines. Sensors 13, 15324–15347 (2013)CrossRefGoogle Scholar
  45. 45.
    J.D. Wrbanek, G.C. Fralick, D. Zhu, Ceramic thin film thermocouples for SiC-based ceramic matrix composites. Thin Solid Films 520, 5801–5806 (2012)CrossRefGoogle Scholar
  46. 46.
    X.M. Chen, O.J. Gregory, M. Amani, Thin-film thermocouples based on the system In2O3-SnO2. J. Am. Ceram. Soc. 94, 854–860 (2011)CrossRefGoogle Scholar
  47. 47.
    K. Conover, M.S. Hurt, R.D. Habing, G.F. Weiner, V.T. Sandoval, R.K. Cordova, E.A. Jaramillo, M.R. Praiswater, T.J. Wood (2000) Transparent temperature sensor for an active matrix liquid crystal display. US Patent 6089751Google Scholar
  48. 48.
    Y.Z. Chen, W.L. Jiang, H.C. Zhang, X.Z. Liu, S.W. Jiang, Film thickness influences on the thermoelectric properties of NiCr/NiSi thin film thermocouples. Mod. Phys. Lett. B 27, 1350103 (2013)CrossRefGoogle Scholar
  49. 49.
    H. Choi, X. Li, Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel. Sens. Actuators A Phys. 136, 118–124 (2007)CrossRefGoogle Scholar
  50. 50.
    B. Tian, Z.K. Zhang, P. Shi, C. Zheng, Q.Y. Yu, W.X. Jing, Z.D. Jiang, Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites. Rev. Sci. Instrum. 88, 015007 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and Mineral ResourcesXi’an University of Architecture and TechnologyXi’anChina
  2. 2.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations