Advertisement

Low temperature sintering of LiF-doped CoTiNb2O8 microwave dielectric ceramics

  • Yun Zhang
  • Shihua Ding
  • Tianxiu Song
  • Long Huang
  • Xiaoyun Zhang
Article

Abstract

Rutile-structured CoTiNb2O8 ceramics were synthesized via traditional solid-state route. The effects of LiF addition on their sintering behavior, phase composition, microstructure and microwave dielectric properties were investigated systematically in this study. The sintering temperature was successfully lowered to 950 °C by a small amount (1 wt%) of sintering aid. XRD and EDS results indicated that chemical reaction between LiF and host ceramic took place during sintering process. And CoTiNb2O8 with Li0.8Co0.2Nb0.96O3 second phase coexisted in the entire composition range. The addition of LiF to the CoTiNb2O8 ceramics induced a limited degradation in microwave dielectric properties. The εr and Q × f values of the low-fired CoTiNb2O8 ceramics ranged from 39.4 to 53.9 and 17,580 GHz to 20,147 GHz, respectively. While the τf decreased in negative values with increasing LiF content. When sintered at 950 °C, the CoTiNb2O8 ceramic doped with 1 wt% LiF had excellent microwave dielectric properties: εr = 53.9, Q × f = 20,147 GHz, and τf = 77.2 ppm/°C, making them promising for LTCC applications.

Notes

Acknowledgements

This work has been supported by the Key Scientific Research Fund of Xihua University (Grant No. Z17106).

References

  1. 1.
    Z.X. Wang, C.L. Yuan, B.H. Zhu, Q. Feng, F. Liu, L. Miao, C.R. Zhou, G.H. Chen, J. Mater. Sci. Mater. Electron. 29, 1817 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Manan, H.X. Liu, J. Khan, H. Hao, A. Ullah, A.S. Ahmad, J. Mater. Sci. Mater. Electron. 28, 15552 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Iqbal, R. Muhammad, J. Mater. Sci. Mater. Electron. 27, 1314 (2016)CrossRefGoogle Scholar
  4. 4.
    Y.C. Chen, R.Y. Syu, J. Mater. Sci. Mater. Electron. 27, 6979 (2016)CrossRefGoogle Scholar
  5. 5.
    C.F. Tseng, J. Eur. Ceram. Soc. 35, 383 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Xiao, J. Lou, Y.S. Wei, H.R. Sun, L. Li, P. Zhang, J. Mater. Sci. Mater. Electron. 29, 985 (2018)CrossRefGoogle Scholar
  7. 7.
    Z.L. Huan, Q.C. Sun, W.B. Ma, L.J. Wang, F. Xiao, T.K. Chen, J. Alloys Compd. 551, 630 (2013)CrossRefGoogle Scholar
  8. 8.
    C.F. Tseng, J. Eur. Ceram. Soc. 34, 3641 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, Y.C. Zhang, M.Q. Xiang, S.Y. Liu, H. Liu, Ceram. Int. 42, 3542 (2016)CrossRefGoogle Scholar
  10. 10.
    H.J. Wang, J.X. Bi, H.T. Wu, J. Mater. Sci. Mater. Electron. 28, 2128 (2017)CrossRefGoogle Scholar
  11. 11.
    R.C. Pullar, J.D. Breeze, N.M. Alford, J. Am. Ceram. Soc. 88, 2466 (2005)CrossRefGoogle Scholar
  12. 12.
    R.Z. Zuo, J. Zhang, J. Song, Y.D. Xu, J. Am. Ceram. Soc. 101, 569 (2018)CrossRefGoogle Scholar
  13. 13.
    H.L. Pan, M.T. Liu, M.F. Li, F. Ling, H.T. Wu, J. Mater. Sci. Mater. Electron. 29, 999 (2018)CrossRefGoogle Scholar
  14. 14.
    H.L. Pan, H.T. Wu, Ceram. Int. 43, 14484 (2017)CrossRefGoogle Scholar
  15. 15.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960)CrossRefGoogle Scholar
  16. 16.
    W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476 (1970)CrossRefGoogle Scholar
  17. 17.
    Y. Kobayashiy, M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586 (1985)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, Y.Y. Zhou, Z.X. Yue, Ceram. Int. 39, 2051 (2013)CrossRefGoogle Scholar
  19. 19.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  20. 20.
    J.R. Carvajal, Program Fullprof, Lab Léon Brillouin, CEA-CNRS, version Avril 2008, LLB-LCSIM (2008)Google Scholar
  21. 21.
    Y.Z. Hao, H. Yang, G.H. Chen, Q.L. Zhang, J. Alloys Compd. 552, 173 (2013)CrossRefGoogle Scholar
  22. 22.
    J.M. Li, B. Yao, D.C. Xu, Z.X. Huang, Z.J. Wang, X. Wu, C.G. Fan, J. Alloys Compd. 663, 494 (2016)CrossRefGoogle Scholar
  23. 23.
    X.P. Lv, Y. Zheng, B. Zhou, B. Zhou, Z.W. Dong, P. Cheng, Mater. Lett. 91, 217 (2013)CrossRefGoogle Scholar
  24. 24.
    R.D. Shannon, R.A. Oswald, J.B. Parise, B.H.T. Chai, P. Byszewski, A. Pajaczowska, R. Sobolewski, J. Solid State Chem. 98, 90 (1992)CrossRefGoogle Scholar
  25. 25.
    W.S. Kim, T.H. Kim, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 37, 5367 (1998)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, S.Y. Liu, Y.C. Zhang, M.Q. Xiang, J. Mater. Sci. Mater. Electron. 27, 11293 (2016)CrossRefGoogle Scholar
  27. 27.
    L.X. Li, Z.D. Gao, Y.R. Liu, H.C. .Cai, S. Li, Mater. Lett. 140, 5 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yun Zhang
    • 1
  • Shihua Ding
    • 1
  • Tianxiu Song
    • 1
  • Long Huang
    • 1
  • Xiaoyun Zhang
    • 1
  1. 1.School of Materials Science and EngineeringXihua UniversityChengduPeople’s Republic of China

Personalised recommendations