Advertisement

Effects of La doping on structural, magnetic, and ferroelectric properties of Aurivillius Bi6Fe1.4Co0.6Ti3O18 thin films

  • Xuzhong Zuo
  • Zhe Liu
  • Enjie He
  • Zhenzhen Hui
  • Jie Yang
  • Xuebin Zhu
  • Jianming Dai
Article
  • 10 Downloads

Abstract

The effects of La ions substitution on the structural, magnetic, ferroelectric and leakage properties of Aurivillius Bi6−xLaxFe1.4Co0.6Ti3O18 (BLFCTO, 0 ≤ x ≤ 1) thin films are investigated. X-ray diffraction (XRD) refinement results indicate that all the samples have an orthorhombic crystal structure and the space group of B2cb. The coexistence of room-temperature ferromagnetism and ferroelectricity can be found in all the samples. Doping La ions can increase ferroelectricity magnitude and decrease leakage current. Furthermore, the energy conversion efficiency can be significantly improved from 16.0 to 53.1% due to the decrease of leakage current. The remanent magnetization 2Mr of 8.2 emu/cm3 and polarization 2Pr of 37.4 µC/cm2 are observed in the x = 0.6 sample. The changes of magnetic, ferroelectric, and leakage properties are discussed in terms of lattice distortion, grain size, oxygen vacancy and compactness. The present work provides an available way to explore room-temperature multiferroics (MFs) and optimize energy efficiency in Aurivillius compounds.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 51702002), the Major Foundation of Education Department of Anhui Province (Grant nos. KJ2018A0529 and KJ2018A0526), the Natural Science Foundation of Anhui Province (Grant no. 1808085MA09) and the Talent Project of Anhui Science and Technology University (Grant nos. DQYJ201703, DQWD201603 and HCYJ201705).

References

  1. 1.
    T. Faraz, M. Maity, N. Schmidt, S. Deepak, M.E. Roy, R.W. Pemble, Whatmore, L. Keeney, Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic Aurivillius phase thin films. J. Am. Ceram. Soc. 100, 975–987 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Huang, G. Wan, S. Sun, J. Wang, R. Peng, Y. Lin, X. Zhai, Z. Fu, Y. Lu, Observation of exchange anisotropy in single-phase layer-structured oxides with long periods. Sci. Rep. 5, 15261 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Imai, X. Cheng, H.L. Xin, E.A. Eliseev, A.N. Morozovska, S.V. Kalinin, R. Takahashi, M. Lippmaa, Y. Matsumoto, V. Nagaraja, Epitaxial Bi5Ti3FeO15–CoFe2O4 pillarmatrix multiferroic nanostructures. ACS Nano 7, 11079–11086 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Yang, M.Y. Guo, D.P. Song, X.W. Tang, R.H. Wei, L. Hu, J. Yang, W.H. Song, J.M. Dai, X.J. Lou, X.B. Zhu, Y.P. Sun, Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 111, 183903 (2017)CrossRefGoogle Scholar
  5. 5.
    L. Keeney, T. Maity, M. Schmidt, A. Amann, N. Deepak, N. Petkov, S. Roy, M.E. Pemble, R.W. Whatmore, Magnetic field-induced ferroelectric switching in multiferroic Aurivillius phase thin films at room temperature. J. Am. Ceram. Soc. 96, 2339–2357 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Aurivillius, Mixed bismuth oxides with layer lattices. I. The structure type of CaNb2Bi2O9. Arki Kemi 1, 463–480 (1949)Google Scholar
  7. 7.
    B. Aurivillius, Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12. Arki Kemi 1, 499–512 (1950)Google Scholar
  8. 8.
    S.E. Cummins, L.E. Cross, Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. J. Appl. Phys. 39, 2268 (1968)CrossRefGoogle Scholar
  9. 9.
    H.N. Lee, D. Hesse, N. Zakharov, U. Gosele, Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science 296, 2006 (2002)Google Scholar
  10. 10.
    J. Yang, L.H. Yin, Z. Liu, X.B. Zhu, W.H. Song, J.M. Dai, Z.R. Yang, Y.P. Sun, Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3O18 and the doped compounds. Appl. Phys. Lett. 101, 012402 (2012)CrossRefGoogle Scholar
  11. 11.
    T.T. Wang, H.M. Deng, X.K. Meng, H.Y. Cao, W.L. Zhou, P. Shen, Y.Y. Zhang, P.X. Yang, J.H. Chu, Tunable polarization and magnetization at room-temperature in narrow bandgap Aurivillius Bi6Fe2 – xCox/2Nix/2Ti3O18. Ceram. Int. 43, 8792–8799 (2017)CrossRefGoogle Scholar
  12. 12.
    X.Z. Zuo, J. Yang, D.P. Song, B. Yuan, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, Y.P. Sun, Magnetic, dielectric, and magneto-dielectric properties of rare-earth-substituted Aurivillius phase Bi6Fe1.4Co0.6Ti3O18. J. Appl. Phys. 116, 154102 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Raghavana, J.W. Kim, J.W. Kim, S.S. Kim, Effects of La- and V-doping on structural, electrical and multiferroic properties of Bi6Fe2Ti3O18 thin films. Ceram. Int. 40, 10649–10655 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B 62, 228 (2000)CrossRefGoogle Scholar
  15. 15.
    J.F. Scott, C.A.P. Araujo, Ferroelectric memories. Sicence 246, 1400–1405 (1989)CrossRefGoogle Scholar
  16. 16.
    P. Song, J. Yang, B. Yuan, X.Z. Zuo, X.W. Tang, L. Chen, W.H. Song, X.B. Zhu, Y.P. Sun, Improved ferroelectric polarization of V-doped Bi6Fe2Ti3O18 thin films prepared by a chemical solution deposition. J. Appl. Phys. 117, 244105 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.W. Ma, A.X. Xu, X.H. Li, X.P. Zhang, Improved properties of epitaxial YNixMn1–xO3 films by annealing under high magnetic fields. Appl. Phys. Lett. 89, 152505 (2006)CrossRefGoogle Scholar
  18. 18.
    X.Z. Zuo, J. Yang, B. Yuan, D.P. Song, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, Y.P. Sun, Enhanced multiferroic properties of Aurivillius Bi6Fe1.4Co0.6Ti3O18 thin films by magnetic field annealing. Appl. Phys. Lett. 107, 222901 (2015)CrossRefGoogle Scholar
  19. 19.
    D.L. Zhang, L. Feng, W.C. Huang, W.B. Zhao, Z.W. Chen, X.G. Li, Oxygen vacancy-induced ferromagnetism in Bi4NdTi3FeO15 multiferroic ceramics. J. Appl. Phys. 120, 154105 (2016)CrossRefGoogle Scholar
  20. 20.
    X.Y. Mao, H. Sun, W. Wang, X.B. Chen, Y.L. Lu, Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 102, 072904 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Long, Q. Chang, Y. Wu, W. He, Y. Li, H. Fan, New layer-structured ferroelectric polycrystallines, Na0.5NdxBi4.5–xTi4O15: crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3, 8852–8864 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Wang, S.P. Gu, X.Y. Mao, X.B. Chen, Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12–SrBi4Ti4O15. J. Appl. Phys. 102, 024102 (2007)CrossRefGoogle Scholar
  23. 23.
    N.C. Hyatt, I.M. Reaney, K.S. Knight, Ferroelectric-paraelectric phase transition in the n = 2 Aurivillius phase Bi3Ti1.5W0.5O9: a neutron powder diffraction study. Phys. Rev. B 71, 024119 (2005)CrossRefGoogle Scholar
  24. 24.
    C.H. Wang, Z.F. Liu, L. Yu, Z.M. Tian, S.L. Yuan, Structural, magnetic and dielectric properties of Bi5 – xLaxTi3Co0.5Fe0.5O15 ceramics. Mater. Sci. Eng. B 176, 1243–1246 (2011)CrossRefGoogle Scholar
  25. 25.
    Z.W. Lei, Y. Huang, M. Liu, W. Ge, Y.H. Ling, R.R. Peng, X.Y. Mao, X.B. Chen, Y.L. Lu, Ferroelectric and ferromagnetic properties of Bi7 – xLaxFe1.5Co1.5Ti3O21 ceramics prepared by the hot-press method. J. Alloys Compd. 600, 168–171 (2014)CrossRefGoogle Scholar
  26. 26.
    D.P. Song, J. Yang, Y.X. Wang, J. Yang, X.B. Zhu, Magnetic and ferroelectric properties of Aurivillius phase Bi7Fe3Ti3O21 and their doped films. Ceram. Int. 43, 17148–17152 (2017)CrossRefGoogle Scholar
  27. 27.
    K. Han, Q. Li, C. Chanthad, M.R. Gadinski, G.Z. Zhang, Q. Wang, A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Funct. Mater. 25, 3505–3513 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Xiong, J. Yang, Y.F. Qin, W.J. Huang, X.W. Tang, L.H. Yin, W.H. Song, J.M. Dai, X.B. Zhu, Y.P. Sun, Room temperature multiferroicity in Aurivillius compounds Bi6Fe2 – xNixTi3O18 (0 ≤ x ≤ 1). Ceram. Int. 43, 4405–4410 (2017)CrossRefGoogle Scholar
  29. 29.
    F.W. Yang, G.D. Zhang, Z.H. Hu, Zong, M.H. Tang, Thickness-dependent ferroelectric behavior of predominantly (117)-oriented Bi3.15Nd0.85Ti3O12 thin-film capacitors. Appl. Phys. Lett. 106, 172903 (2015)CrossRefGoogle Scholar
  30. 30.
    C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume, T. Horiuchi, S. Sakai, Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 99, 054104 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electrical and Electronic EngineeringAnhui Science and Technology UniversityFengyangChina
  2. 2.Key Laboratory of Materials Physics, Institute of Solid State PhysicsUniversity of Chinese Academy of SciencesHefeiChina
  3. 3.College of Chemistry and Materials EngineeringAnhui Science and Technology UniversityFengyangChina

Personalised recommendations