Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20097–20103 | Cite as

Activation energy of subgrain growth process and morphology evolution in β-SiC/Si(111) heterostructures synthesized by pulse photon treatment method in a methane atmosphere

  • V. O. Kuzmina
  • A. A. Sinelnikov
  • S. A. Soldatenko
  • M. Sumets
Article
  • 26 Downloads

Abstract

Single-phase β-SiC films were grown by the pulsed photon treatment (PPT) of (111)Si wafers with the use of xenon lamp radiation in a methane atmosphere. Study of phase composition, structure and morphology revealed that β-SiC oriented nanocrystalline films are formed onto both non-irradiated and irradiated surfaces under the radiation energy range from 269 to 284 J cm−2 supplied for 3 s. The non-irradiated side was undergone the rapid thermal annealing (RTA). It is demonstrated that the average subgrain size increases from 4.2 nm (Ep = 269 J cm−2) to 7.9 nm (Ep = 284 J cm−2) and from 3.9 to 7.0 nm for the irradiated and non-irradiated sides respectively when radiation energy density rises. The surface roughness of β-SiC films increases gradually from 19 to 60 nm and from 11 to 56 nm on irradiated and non-irradiated sides respectively in the same radiation energy density range. The β-SiC subgrain growth activation energy is 1.3 eV and it does not depend on the activation method. The surface roughness evolves with the activation energy of 2.5 eV and 3.5 eV for PPT and RTA respectively.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Amorim, R. Savio, M. Massi, H. Santiago, in Physics and Technology of Silicon Carbide Devices (InTech, Rijeka, 2012), pp. 313–336Google Scholar
  2. 2.
    V. Luchinin, Y. Tairov, Chem. Life 7, 12 (2009)Google Scholar
  3. 3.
    Y. Chen, K. Matsumoto, Y. Nishio, T. Shirafuji, S. Nishino, Mater. Sci. Eng. B 61–62, 579 (1999)CrossRefGoogle Scholar
  4. 4.
    L. Cheng, M. Pan, J. Scofield, A.J. Steckl, J. Electron. Mater. 31, 361 (2002)CrossRefGoogle Scholar
  5. 5.
    Y. Hatanaka, K. Sano, T. Aoki, A.M. Wrobel, Thin Solid Films 368, 287 (2000)CrossRefGoogle Scholar
  6. 6.
    A. Ellison, J. Zhang, A. Henry, E. Janzén, J. Cryst. Growth 236, 225 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Wang, N. Huang, H. Zhuang, Z. Zhai, B. Yang, L. Liu, X. Jiang, Surf. Coat. Technol. 299, 96 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Kakuta, N. Moronuki, Y. Furukawa, JSME Int. J. Ser. C 47, 123 (2004)CrossRefGoogle Scholar
  9. 9.
    M. Skowronski, T. Kimoto, Silicon Carbide Epitaxy (North-Holland, Amsterdam, 2015)CrossRefGoogle Scholar
  10. 10.
    V. Iyevlev, A. Kostyuchenko, M. Sumets, Proc. SPIE 7747, 77471J-1 (2011)Google Scholar
  11. 11.
    S.A. Kukushkin, A.V. Osipov, N.A. Feoktistov, Phys. Solid State 56, 1507 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Ferro, Crit. Rev. Solid State Mater. Sci. 40, 56 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Bittencourt, J. Appl. Phys. 86, 4643 (1999)CrossRefGoogle Scholar
  14. 14.
    V.M. Ievlev, S.A. Soldatenko, S.B. Kushchev, Y.V. Gorozhankin, Inorg. Mater. 44, 705 (2008)CrossRefGoogle Scholar
  15. 15.
    V.M. Ievlev, Russ. Chem. Rev. 82, 815 (2013)CrossRefGoogle Scholar
  16. 16.
    V.M. Ievlev, T.L. Turaeva, A.N. Latyshev, A.A. Sinel’nikov, V.N. Selivanov, Phys. Met. Metallogr. 103, 58 (2007)CrossRefGoogle Scholar
  17. 17.
    V.M. Ievlev, Surf. X-ray Synchrotron Neutron Stud. 10, 48 (2009)Google Scholar
  18. 18.
    S.B. Kuschev, S.A. Soldatenko, Altern. Energy Ecol. 7, 18 (2011)Google Scholar
  19. 19.
    Powder Diffraction File: PDF-2, Database Sets 1-47 (International Centre for Diffraction Data (ICDD), Pennsylvania, 1997)Google Scholar
  20. 20.
    D. Daraselia, D. Japaridze, Z. Jibuti, A. Shengelaya, K.A. Müller, J. Appl. Phys. 121, 145104 (2017)CrossRefGoogle Scholar
  21. 21.
    Q. Sun, P. Zhu, Q. Xu, R. Tu, S. Zhang, J. Shi, H. Li, L. Zhang, T. Goto, J. Yan, S. Li, J. Am. Ceram. Soc. 101, 1048 (2018)CrossRefGoogle Scholar
  22. 22.
    P. Zhu, M. Yang, Q. Xu, Q. Sun, R. Tu, J. Li, S. Zhang, Q. Li, L. Zhang, T. Goto, J. Shi, H. Li, H. Ohmori, M. Kosinova, B. Basu, J. Am. Ceram. Soc. 101, 3850 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Bockstedte, A. Mattausch, O. Pankratov, Phys. Rev. B 68, 205201 (2003)CrossRefGoogle Scholar
  24. 24.
    F.K. Van Dijen, R. Metselaar, J. Eur. Ceram. Soc. 7, 177 (1991)CrossRefGoogle Scholar
  25. 25.
    J. Pelleg, in (Springer, Cham, 2017), pp. 41–61Google Scholar
  26. 26.
    B.M. Sinelnikov, Bull. North-Cauc. Tech. Univ. 10, 16 (2007)Google Scholar
  27. 27.
    C. Pantea, G.A. Voronin, T. Waldek Zerda, J. Zhang, L. Wang, Y. Wang, T. Uchida, Y. Zhao, Diam. Relat. Mater. 14, 1611 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Military Aviation Engineering UniversityVoronezhRussia
  2. 2.Voronezh State UniversityVoronezhRussia
  3. 3.Voronezh State Technical UniversityVoronezhRussia
  4. 4.University of Texas Rio Grande ValleyBrownsvilleUSA

Personalised recommendations