Advertisement

A photoelectron study of annealing induced changes to workfunction and majority carrier type in pulsed laser deposited few layer WS2 films

  • Urmilaben P. Rathod
  • Jitendra Kumar Jha
  • Andrey A. Voevodin
  • Nigel D. Shepherd
Article
  • 29 Downloads

Abstract

Annealing few layer pulsed laser deposited WS2 films in sulfur increased the S/W ratio from 1.3 to 2.2, improved the mobility from 0.5 to 28 cm2 V−1 s−1, and switched the conductivity from n to p-type. The annealing induced n to p-type switch was confirmed by ultraviolet photoelectron spectroscopy which revealed a workfunction increase from 3.36 to 4.52 eV, a corresponding change in the Fermi level separation from the valence band edge, and a shift of the tungsten X-ray photoelectron spectrum to lower binding energy by ~ 1 eV. Current-voltage measurements indicated that charge injection from ohmic contacts was independent of the interfacial energy barrier, and was governed instead by tunneling from gap states associated with intrinsic point defects and surface contamination. The increased mobility with annealing is ascribed to improved stoichiometry and reduced incoherent scattering from point defects. The p-type conductivity is possibly due to excess sulfur in the form of interstitial ions.

Notes

Acknowledgements

This work was supported by the Advanced Materials and Manufacturing Processes Institute (AMMPI) at the University of North Texas, Denton.

References

  1. 1.
    S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, ACS Nano. 7, 2898 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Chhowalla, Z. Liu, H. Zhang, Chem.Soc.Rev. 44, 2584 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Kumar, M.A. Kuroda, M.Z. Bellus, S. Han, H. Chiu, Appl. Phys. Lett. 106, 123508 (2015)CrossRefGoogle Scholar
  4. 4.
    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. Tan, G. Eda, ACS Nano. 7, 791 (2012)CrossRefGoogle Scholar
  5. 5.
    W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J. Idrobo, Nano Lett. 13, 2615 (2013)CrossRefGoogle Scholar
  6. 6.
    Z. He, X. Wang, W. Xu, Y. Zhou, Y. Sheng, Y. Rong, J.M. Smith, J.H. Warner, ACS Nano. 10, 5847 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8, 966 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Su, Y. Yu, L. Cao, Y. Zhang, Nano Res. 8, 2686 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N.J. Borys, H. Yuan, S.K. Fullerton-Shirey, 2D Mater. 3, 042001 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, ACS Nano. 7, 8963 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Lin, W. Zhang, J. Huang, K. Liu, Y. Lee, C. Liang, C. Chu, L. Li, Nanoscale 4, 6637 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Liu, S.L. Wong, D. Chi, Chem. Vap. Deposition. 21, 241 (2015)CrossRefGoogle Scholar
  13. 13.
    C.M. Orofeo, S. Suzuki, Y. Sekine, H. Hibino, Appl. Phys. Lett. 105, 083112 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Gatensby, N. McEvoy, K. Lee, T. Hallam, N.C. Berner, E. Rezvani, S. Winters, M. O’Brien, G.S. Duesberg, Appl. Surf. Sci. 297, 139 (2014)CrossRefGoogle Scholar
  15. 15.
    M.I. Serna, S.H. Yoo, S. Moreno, Y. Xi, J.P. Oviedo, H. Choi, H.N. Alshareef, M.J. Kim, M. Minary-Jolandan, M.A. Quevedo-Lopez, ACS Nano. 10, 6054 (2016)CrossRefGoogle Scholar
  16. 16.
    T.A. Loh, D.H. Chua, J. Phys. Chem. C 119, 27496 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Ishizawa, H. Fujishiro, T. Naito, A. Ito, T. Goto, Jpn. J. Appl. Phys. 57, 025502 (2018)CrossRefGoogle Scholar
  18. 18.
    K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, M. Hirano, J. Appl. Phys. 89, 1790 (2001)CrossRefGoogle Scholar
  19. 19.
    H. Kim, J. Horwitz, S. Qadri, D. Chrisey, Thin Solid Films. 420, 107 (2002)CrossRefGoogle Scholar
  20. 20.
    D. Rasic, R. Sachan, M.F. Chisholm, J. Prater, J. Narayan, Cry. Growth Des. 17, 6634 (2017)CrossRefGoogle Scholar
  21. 21.
    K. Liu, W. Zhang, Y. Lee, Y. Lin, M. Chang, C. Su, C. Chang, H. Li, Y. Shi, H. Zhang, Nano Lett. 12, 1538 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Donarelli, F. Bisti, F. Perrozzi, L. Ottaviano, Chem. Phys. Lett. 588, 198 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Schenato, C.L.A. Ricardo, P. Scardi, R. Edla, A. Miotello, M. Orlandi, R. Morrish, Appl. Catal. A: Gen. 510, 156 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Bhattacharjee, K.L. Ganapathi, D.N. Nath, N. Bhat, IEEE Trans. Electron Devices 63, 2556 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C. Chia, B. Wang, V.H. Crespi, F. López-Urías, J. Charlier, Sci. Rep. 3, 1755 (2013)CrossRefGoogle Scholar
  26. 26.
    T.A. Loh, D.H. Chua, A.T. Wee, Sci. Rep. 5, 18116 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Frühberger, M. Grunze, D. Dwyer, Sens. Actuators, B: Chem. 31, 167 (1996)CrossRefGoogle Scholar
  28. 28.
    S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, ACS Nano 8, 2880 (2014)CrossRefGoogle Scholar
  29. 29.
    C.R. Serrao, A.M. Diamond, S. Hsu, L. You, S. Gadgil, J. Clarkson, C. Carraro, R. Maboudian, C. Hu, S. Salahuddin, Appl. Phys. Lett. 106, 052101 (2015)CrossRefGoogle Scholar
  30. 30.
    J.K. Jha, W. Sun, J. Du, N.D. Shepherd, J. Appl. Phys. 121, 185304 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Urmilaben P. Rathod
    • 1
  • Jitendra Kumar Jha
    • 1
  • Andrey A. Voevodin
    • 1
  • Nigel D. Shepherd
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations