Advertisement

Structural, optical, dielectric and magnetic properties of PVP coated magnetite (Fe3O4) nanoparticles

  • Zulfiqar
  • Syed Afzal
  • Rajwali Khan
  • Tahir Zeb
  • Muneeb ur Rahman
  • Burhanullah
  • Shahid Ali
  • Gulzar Khan
  • Zia ur Rahman
  • Akhlaq Hussain
Article

Abstract

We report the synthesis of magnetite (Fe3O4) and polyvinylpyrrolidone (PVP) coated Fe3O4 nanoparticles by chemical co-precipitation route. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirm the formation of inverse spinel structure of Fe3O4. XRD peaks of PVP coated Fe3O4 nanoparticles are broad and noisy as compared to Fe3O4. The broadness of peaks is due to small size and large defect density confirmed by energy dispersive spectroscopy (EDS) and scattered area electron diffraction (SAED). Noisy behavior is due to presence of PVP. Average particle size reduced from 10.36 ± 1.97 to 6.91 ± 1.89 nm for Fe3O4 and PVP coated Fe3O4, respectively. From EDS analysis, it is confirmed that the oxygen content reduced from 33.45 to 15.30 at.% with PVP coating. The oxygen content is reduced to half in case of PVP coated Fe3O4 as compared to uncoated Fe3O4. The reduction in oxygen content reveals enhancement in oxygen vacancies. Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) confirm the PVP coating and the calculated value of thickness of the PVP layer on the surface of Fe3O4 is 2.4601 nm. Dielectric constant (εr) and dielectric loss (tanδ) exhibits the dispersion behavior. Ac conductivity (σac) increases sharply at large frequencies, which is due to enhancement in charge density (liberated charge carriers from defects + conduction charge carriers). The variation in dielectric properties and conductivity is due to Maxwell Wagner interfacial polarization and hopping of charge carriers between Fe2+/Fe3+. Magnetic properties M(T) shows reduction of blocking temperature (TB) from 86 to 75 K for uncoated and PVP coated Fe3O4 nanoparticles. Shifting of TB to lower values is consistent with particle size reduction. M(H) loops at room temperature show typical superparamagnetic behavior. Reduction in saturation magnetization (Ms) is due to the presence of nonmagnetic polymer layer on the surface of Fe3O4 nanoparticles and large number of defects (oxygen vacancies). Field cooled M(H) loops at 5 K show the antisymmetric shift of coercive field along the negative x-axis. The exchange bias field HE enhances to 227 Oe in case of PVP coated Fe3O4 nanoparticles, which is double of the 125 Oe for uncoated nanoparticles. The enhancement in HE is due to smaller sized nanoparticles having large surface to volume ratio having large defect density (oxygen vacancies).

Notes

Acknowledgements

This work is financially supported by the Higher Education Commission of Pakistan under START-UP RESEARCH GRANT PROGRAM (Grant no.: 21-1732/SRGP/R&D/HEC/2017), the Fundamental Research Funds for the HEC Pakistan.

References

  1. 1.
    S.C. Watawe, U.A. Bamane, S.P. Gonbare, R.B. Tangoli, Mater. Chem. Phys. 103, 323 (2007)CrossRefGoogle Scholar
  2. 2.
    R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Smart Mater. Struct. 15, 125 (2006)CrossRefGoogle Scholar
  3. 3.
    X. Batlle, A. Labarta, J. Phys. D Apply. Phys. 35, R15 (2002)CrossRefGoogle Scholar
  4. 4.
    K.J. Lee, J.H. An, J.S. Shin, D.H. Kim, C. Kim, H. Ozaki, J.G. Koh, J. Nanotechnol. 18, 465201 (2007)CrossRefGoogle Scholar
  5. 5.
    P. Tartaj, M.P. Morales, S.V. Verdaguer, T.G. Carreño, C.J. Serna, J. Phys. D Appl. Phys. 36, R182–R197 (2003)CrossRefGoogle Scholar
  6. 6.
    J.M.D. Coey, Phys. Rev. Lett. 27, 1140 (1971)CrossRefGoogle Scholar
  7. 7.
    B. Martínez, X. Obradors, L. Balcells, A. Rouanet, C. Monty, Phys. Rev. Lett. 80, 181 (1998)CrossRefGoogle Scholar
  8. 8.
    C.C. Berry, A.S.G. Curtis, J. Phys. D 36, R198 (2003)CrossRefGoogle Scholar
  9. 9.
    G.F. Goya, T.S. Berquo, F.C. Fonseca. M.P. Morales, J. Appl. Phys. 94, 3520 (2003)CrossRefGoogle Scholar
  10. 10.
    P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Curr. Appl. Phys. 13, 479–486 (2013)CrossRefGoogle Scholar
  11. 11.
    N.S. Kommareddi, M. Tata, V.T. John, G.L. Pherson, M.F. Herman, Y.S. Lee, C.J. O’Connor, J.A. Akkara, D.L. Kaplan, Chem. Mater. 8, 801 (1996)CrossRefGoogle Scholar
  12. 12.
    N. Fauconnier, J.N. Pons, A. Roger, Bee, Colloid Interface Sci. 194, 423 (1997)CrossRefGoogle Scholar
  13. 13.
    A.D. Sheikh, V.L. Mathe, J. Mater. Sci. 43, 2018 (2008)CrossRefGoogle Scholar
  14. 14.
    P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhav, P.D. Lokhande, K.M. Jadhav, R. Sasikala, Solid State Chem. 182, 3217 (2009)CrossRefGoogle Scholar
  15. 15.
    P.P. Hankare, U.B. Sankpal, R.P. Patil, A.V. Jadhav, K.M. Garadkar, B.K. Chougule, J. Magn. Magn. Mater. 323, 389–393 (2011)CrossRefGoogle Scholar
  16. 16.
    M.P. Morales, S.V. Verdaguer, M.I. Montero, C.J. Serna, Chem. Mater. 11, 3058 (1999)CrossRefGoogle Scholar
  17. 17.
    Zulfiqar, M.U. Rahman, M. Usman, S.K. Hasanain, Z.U. Rahman, A. Ullah, W. Kim, J. Korean Phys. Soc. 65, 1925–1929 (2014)CrossRefGoogle Scholar
  18. 18.
    G.F. Goya, M.P. Morales, J. Metastabl. Nanocrystall. Mater. 673, 20–21 (2004)Google Scholar
  19. 19.
    D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Inc, Boston, 1978)Google Scholar
  20. 20.
    X. Lu, L. Li, W. Zhang, C. Wang, J. Nanotechnol. 16, 2233–2237 (2005)CrossRefGoogle Scholar
  21. 21.
    N. Arsalani, H. Fattahi, M. Nazarpoor, Express Polym. Lett. 4, 329–338 (2010)CrossRefGoogle Scholar
  22. 22.
    Zulfiqar, R. Khan, M.U. Rahman, Z. Iqbal, J. Mater. Sci. Mater. Electron. 27, 12490–12498 (2016)CrossRefGoogle Scholar
  23. 23.
    I.M. Mirza, A.K. Sarfraz, S.K. Hasanain, Effect of surfactant on magnetic and optical properties of α-Fe2O3 nanoparticles. ACTA Phys. Pol. A 126, 1280–1287 (2014)CrossRefGoogle Scholar
  24. 24.
    C.J. O’Connor, Y.S.L. Buisson, S. Li, S. Banerjee, R. Premchandran, T. Baumgartner, V.T. John, G.L. McPherson, J.A. Akkara, D.L. Kaplan, J. Appl. Phys. 81, 4741 (1997)CrossRefGoogle Scholar
  25. 25.
    K.W. Wagner, Ann. Phys. 40, 817 (1913)CrossRefGoogle Scholar
  26. 26.
    G.C. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  27. 27.
    P.A. Miles, W.B. Phal, A.V. Hippal, Rev. Mod. Phys. 29, 279 (1957)CrossRefGoogle Scholar
  28. 28.
    N. Rezlescu, E. Rezlescu, Phys. Status Solidi A 23, 575 (1974)CrossRefGoogle Scholar
  29. 29.
    D. Ravinder, K. Latha, J. Appl. Phys. 75, 6118 (1994)CrossRefGoogle Scholar
  30. 30.
    A.M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999)CrossRefGoogle Scholar
  31. 31.
    J.H. Nam, H.H. Jung, J.Y. Shin, J.H. Oh, IEEE Trans. Magn. 31, 3985 (1995)CrossRefGoogle Scholar
  32. 32.
    S.R. Murthy, J. Mater. Sci. Lett. 3, 1049 (1984)CrossRefGoogle Scholar
  33. 33.
    P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhav, I.S. Mulla, K.M. Jadhav, B.K. Chougule, J. Magn. Magn. Mater. 321, 3270 (2009)CrossRefGoogle Scholar
  34. 34.
    K.P. Thummer, H.H. Joshi, R.G. Kulkarni, J. Mater. Sci. Lett. 18, 1529 (1999)CrossRefGoogle Scholar
  35. 35.
    B.K. Kunar, P.K. Singh, P. Kishan, N. Kumar, G.P. Srivastava, J. Appl. Phys. 63, 3780 (1988)CrossRefGoogle Scholar
  36. 36.
    S. Mehraj, M.S. Ansari, Alimuddin, Physica E Low Dimens. Syst. Nanostruct. 65, 84–92 (2015)CrossRefGoogle Scholar
  37. 37.
    D. Alder, J. Feinleib, Phys. Rev. B 2, 3112 (1970)CrossRefGoogle Scholar
  38. 38.
    E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D 41, 185005 (2008)CrossRefGoogle Scholar
  39. 39.
    M.G. Chourashiya, J.Y. Patil, S.H. Pawar, L.D. Jadhav, Mater. Chem. Phys. 109, 39 (2008)CrossRefGoogle Scholar
  40. 40.
    A.M. Feroz, M.B. Khalid, C. Indrajeet, G.M. Bhat, J. Mater. Sci. Mater. Electron. 25, 1564–1570 (2014)CrossRefGoogle Scholar
  41. 41.
    H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mater. Chem. Phys. 94, 449 (2005)CrossRefGoogle Scholar
  42. 42.
    S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikas, Phys. Rev. 45, 9778 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zulfiqar
    • 1
    • 2
  • Syed Afzal
    • 1
  • Rajwali Khan
    • 1
  • Tahir Zeb
    • 1
  • Muneeb ur Rahman
    • 4
  • Burhanullah
    • 4
  • Shahid Ali
    • 3
  • Gulzar Khan
    • 1
  • Zia ur Rahman
    • 5
  • Akhlaq Hussain
    • 2
    • 3
  1. 1.Department of PhysicsAbdul Wali Khan UniversityMardanPakistan
  2. 2.Department of Material Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Department of PhysicsUniversity of PeshawarPeshawarPakistan
  4. 4.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  5. 5.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations