Advertisement

Low temperature studies of Bi doped Pr0.6Sr0.4MnO3 manganites: magnetization and magneto-transport

  • Pramod R. Nadig
  • K. R. Vighnesh
  • Anita D’Souza
  • Mamatha D. Daivajna
Article
  • 22 Downloads

Abstract

Low temperature magnetization and resistivity measurements of bismuth (Bi) doped Pr0.6−xBixSr0.4MnO3 (x = 0.2, 0.23 and 0.25) manganites synthesized by solid state reaction method are reported here. Resistivity measurements in all bismuth doped samples in the absence of field show no significant metal–insulator transition. But for x = 0.2, in zero field the transition observed at lower temperature is associated with hysteresis indicating its first order nature. The resistivity and magnetization measurements establish the coexistence of ferromagnetic metallic and antiferromagnetic insulating phase at lower temperature. We present magnetization and resistivity measurements on higher concentration of bismuth exhibiting the coexistence of two phases at low temperature and the kinetic arrest of a first-order ferromagnetic-to-antiferromagnetic transition.

Notes

Acknowledgements

This work was supported by UGC-DAE CSR Indore Centre (Grant No. CSR-IC/CRS-161/2015-16/18). Authors are thankful to Dr. P D Babu, UGC-DAE CSR Mumbai centre magnetization measurements and Dr. Rajeev Rawat, UGC-DAE CSR Indore centre for resistivity and magnetotransport measurements.

References

  1. 1.
    K. Kumar, A.K. Pramanik, A. Banerjee, P. Chaddah, S.B. Roy, S. Park, C.L. Zhang, S.W. Cheong, Relating supercooling and glass-like arrest of kinetics for phase separated systems: doped CeFe2 and (La,Pr,Ca)MnO3. Phys. Rev. B 73, 184435 (2006)CrossRefGoogle Scholar
  2. 2.
    M.A. Manekar, S. Chaudhary, M.K. Chattopadhyay, K.J. Singh, S.B. Roy, P. Chaddah, First-order transition from antiferromagnetism to ferromagnetism in Ce(Fe0.96Al0.04)2. Phys. Rev. B 64, 104416 (2001)CrossRefGoogle Scholar
  3. 3.
    K. Sengupta, E.V. Sampathkumaran, Field-induced first-order magnetic phase transition in an intermetallic compound Nd7Rh3: evidence for kinetic hindrance, phase coexistence, and percolative electrical conduction. Phys. Rev. B 73, 020406 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Banerjee, P. Chaddah, S. Dash, K. Kumar, A. Lakhani, X. Chen, R.V. Ramanujan, History-dependent nucleation and growth of the martensitic phase in the magnetic shape memory alloy Ni45Co5Mn38Sn12. Phys. Rev. B 84, 214420 (2011)CrossRefGoogle Scholar
  5. 5.
    R.Y. Umetsu, K. Ito, W. Ito, K. Koyama, T. Kanomata, K. Ishida, R. Kainuma, Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy. J. Alloys Compd. 509, 1389–1393 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura, A first-order phase transition induced by a magnetic field. Science 270, 5238 (1995) 961.CrossRefGoogle Scholar
  7. 7.
    Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Banerjee, A.K. Pramanik, K. Kumar, P. Chaddah, Coexisting tunable fractions of glassy and equilibrium long-range-order phases in manganites. J. Phys. Condens. Matter 18, 605–611 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Lakhani, P. Banerjee, X. Chaddah, R.V. Chen, Ramanujan, Magnetic glass in shape memory alloy: Ni45Co5Mn38Sn12. J. Phys. Condens. Matter 24, 386004 (2012)CrossRefGoogle Scholar
  10. 10.
    V.K. Sharma, M.K. Chattopadhyay, S.B. Roy, Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys. Rev. B 76, 140401 (2007)CrossRefGoogle Scholar
  11. 11.
    K. Ajaya, K.G. Nayak, A.K. Suresh, Nigam, Phase coexistence induced by cooling across the first order transition in Ni–Co–Mn–Sb shape memory alloy. J. Appl. Phys. 108, 063915 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Aga Shahee, C. Kumar, N.P. Shekhar, Lalla, Kinetic arrest of the first-order RC to Pbnm phase transition in supercooled LaxMnO3 + δ (x = 1 and 0.9). J. Phys. Condens. Matter 24, 225405 (2012)CrossRefGoogle Scholar
  13. 13.
    P. Chaddah, K. Kumar, A. Banerjee, Devitrification and recrystallization of magnetic glass La0.5Ca0.5MnO3. Phys. Rev. B 77, 100402 (2008)CrossRefGoogle Scholar
  14. 14.
    R. Rawat, P. Chaddah, P. Bag, K. Das, I. Das, The metal–insulator transition in nanocrystalline Pr0.67Ca0.33MnO3: the correlation between supercooling and kinetic arrest. J. Phys. Condens. Matter 24, 416001 (2012)CrossRefGoogle Scholar
  15. 15.
    R. Rawat, K. Mukherjee, K. Kumar, A. Banerjee, P. Chaddah, Anomalous first-order transition in Nd0.5Sr0.5MnO3: an interplay between kinetic arrest and thermodynamic transitions. J. Phys. Condens. Matter 19, 256211 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Banerjee, K. Mukherjee, K. Kumar, P. Chaddah, Ferromagnetic ground state of the robust charge-ordered manganite Pr0.5Ca0.5MnO3 obtained by minimal Al substitution. Phys. Rev. B 74, 224445 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–414 (1994)CrossRefGoogle Scholar
  18. 18.
    E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001)CrossRefGoogle Scholar
  19. 19.
    P.R. Sagdeo, S. Anwar, N.P. Lalla, Strain induced coexistence of monoclinic and charge ordered phases in La1–xCaxMnO3. Phys. Rev. B 74, 214118 (2006)CrossRefGoogle Scholar
  20. 20.
    J.C. Loudon, N.D. Mathur, P.A. Midgley, Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature 420, 797–800 (2002)CrossRefGoogle Scholar
  21. 21.
    W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, K. Shimizu, Praseodymium-deficiency effects upon physical properties of bulk Pr0.6Sr0.4MnO3 manganite. J. Magn. Magn. Mater. 310, 237–239 (2007)CrossRefGoogle Scholar
  22. 22.
    M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Zemni, M. Baazaoui, J. Dhahri, H. Vincent, M. Oumezzine, Above room temperature magnetocaloric effect in perovskite Pr0.6Sr0.4MnO3. Mater. Lett. 63, 489–491 (2009)CrossRefGoogle Scholar
  24. 24.
    M.W. Shaikh, D. Varshney, Structural and electrical properties of Pr1–xSrxMnO3 (x = 0.25, 0.3, 0.35 and 0.4) manganites. Mater. Sci. Semicond. Process. 27, 418–426 (2014)CrossRefGoogle Scholar
  25. 25.
    V.B. Naik, S.K. Barik, R. Mahendiran, B. Raveau, Magnetic and calorimetric investigations of inverse magnetocaloric effect in Pr0.46Sr0.54MnO3. Appl. Phys. Lett. 98, 112506 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Martin, M. Maignan, B. Hervieu, Raveau, Magnetic phase diagrams of L1–xAxMnO3 manganites (L = Pr, Sm; A = Ca, Sr). Phys. Rev. B 60, 12191 (1999)CrossRefGoogle Scholar
  27. 27.
    K. Knížek, J. Hejtmanek, Z. Jirak, C. Martin, M. Hervieu, B. Raveau, G. André, F. Bouree, Structure, magnetism, and transport properties of Pr1–xSrxMnO3 (x = 0.45 – 0.75) up to 1200 K. Chem. Mater. 16, 1104–1110 (2004)CrossRefGoogle Scholar
  28. 28.
    V. Maheswar Repaka, T.S. Tripathi, M. Aparnadevi, R. Mahendiran, Magnetocaloric effect and magnetothermopower in the room temperature ferromagnet Pr0.6Sr0.4MnO3,. J. Appl. Phys. 112, 123915 (2012)CrossRefGoogle Scholar
  29. 29.
    J.L. García-Muñoz, C. Frontera, M.A.G. Aranda, A. Llobet, C. Ritter, High-temperature orbital and charge ordering in Bi1/2Sr1/2MnO3. Phys. Rev. B 63, 064415 (2001)CrossRefGoogle Scholar
  30. 30.
    W. Kammoun, W. Cheikhrouhou-Koubaa, A. Boujelben, Cheikhrouhou, Bi doping effects on the physical properties of Pr0.6Sr0.4Mn1–xBixO3 (0 ≤ x ≤ 0.2) manganese oxides. J. Alloys Compd. 452, 195–199 (2008)CrossRefGoogle Scholar
  31. 31.
    M.D. Daivajna, N. Kumar, V.P.S. Awana, B. Gahtori, J.B. Christopher, S.O. Manjunath, K.Z. Syu, Y.K. Kuo, A. Rao, Electrical, magnetic and thermal properties of Pr0.6–xBixSr0.4MnO3 manganites. J. Alloys Compd. 588, 406–412 (2014)CrossRefGoogle Scholar
  32. 32.
    M.D. Daivajna, A. Rao, W.J. Lin, Y.K. Kuo, Study of electrical and magnetic properties of Pr0.6–xBixSr0.4MnO3 (x = 0.20 and 0.25). Physica B 514, 54–60 (2017)CrossRefGoogle Scholar
  33. 33.
    I. Kammoun, W. Cheikhrouhou-Koubaa, W. Boujelben, A. Cheikhrouhou, Structural and magnetic properties of Bi doped in the A site of (Pr1–xBix)0.6Sr0.4MnO3 (0 ≤ x ≤ 0.4) perovskite manganites. J. Mater. Sci. 43, 960–966 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Ade, R. Singh, Disorder-driven phase transition in La0.37D0.30Ca0.33MnO3 (D = Bi, Sm) manganites. AIP Adv. 5, 087105 (2015)CrossRefGoogle Scholar
  35. 35.
    R. Li, Z. Qu, J. Fang, Influence of Bi3+ doping on electronic transport properties of La0.5–xBixCa0.5MnO3 manganites. Physica B 406, 1312–1316 (2011)CrossRefGoogle Scholar
  36. 36.
    R.R. Zhang, G.L. Kuang, B.C. Zhao, Y.P. Sun, Magnetic and transport properties of phase-separated manganite Bi0.1La0.5Ca0.4MnO3. Solid State Commun. 150, 209–213 (2010)CrossRefGoogle Scholar
  37. 37.
    P. Kushwaha, P. Bag, R. Rawat, P. Chaddah, First-order antiferro–ferromagnetic transition in Fe49(Rh0.93Pd0.07)51 under simultaneous application of magnetic field and external pressure. J. Phys. Condens. Matter. 24, 096005 (2012)CrossRefGoogle Scholar
  38. 38.
    P. Kushwaha, R. Rawat, P. Chaddah, Field induced magnetic transition and metastability in Co substituted Mn2Sb. J. Phys. Condens. Matter 20, 022204 (2008)CrossRefGoogle Scholar
  39. 39.
    M.A. Ghani, Z. Mohamed, A.K. Yahya, Effects of Bi substitution on magnetic and transport properties of La0.7–xBixAg0.3MnO3 ceramics. J. Supercond. Nov. Magn. 25, 2395–2402 (2012)CrossRefGoogle Scholar
  40. 40.
    Z.C. Xia, G. Liu, B. Dong, L. Chen, D.W. Liu, C.H. Fang, D. Doyananda, L. Liu, S. Liu, C.Q. Tang, S.L. Yuan, Observation of a near 100% magnetoresistance in (La0.8Bi0.2)0.67Ca0.33MnO3. J. Magn. Magn. Mater. 292, 260–265 (2005)CrossRefGoogle Scholar
  41. 41.
    W. Boujelben, M. Ellouze, A. Cheikh-Rouhou, J. Pierre, Q. Cai, W.B. Yelon, K. Shimizu, C. Dubourdieu, Neutron diffraction, NMR and magneto-transport properties in the Pr0.6Sr0.4MnO3 perovskite manganite. J. Alloys Compd. 334, 1–8 (2002)CrossRefGoogle Scholar
  42. 42.
    Ritter, P.G. Radaelli, A new monoclinic perovskite allotype in Pr0.6 Sr0.4MnO3,. J. Solid State Chem. 127, 276–282 (1996)CrossRefGoogle Scholar
  43. 43.
    S.S. Rao, S.V. Bhat, Realizing the ‘hindered charge ordered phase in nanoscale charge ordered manganites: magnetization, magneto-transport and EPR investigations. J. Phys. Condens. Matter 21, 196005 (2009)CrossRefGoogle Scholar
  44. 44.
    Y.Q. Zhang, Z.D. Zhang, J. Aarts, First-order nature of a metamagnetic transition and mechanism of giant magnetoresistance in Mn2Sb0.95Sn0.05. Phys. Rev. B 70, 132407 (2004)CrossRefGoogle Scholar
  45. 45.
    R.D. Curiale, H.E. Sánchez, C.A. Troiani, H. Ramos, A.G. Pastoriza, P. Leyva, Levy, Magnetism of manganite nanotubes constituted by assembled nanoparticles. Phys. Rev. B 75, 224410 (2007)CrossRefGoogle Scholar
  46. 46.
    S.S. Rao, S.V. Bhat, Probing the existing magnetic phases in Pr0.5Ca0.5MnO3 (PCMO) nanowires and nanoparticles: magnetization and magneto-transport investigations. J. Phys. Condens. Matter 22, 116004 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pramod R. Nadig
    • 1
  • K. R. Vighnesh
    • 1
  • Anita D’Souza
    • 1
  • Mamatha D. Daivajna
    • 1
  1. 1.Department of Physics, Manipal Insititute of TechnologyManipal Academy of Higher EducationManipalIndia

Personalised recommendations