Advertisement

Preparation and characterization of photocatalytic TiO2/WO3 films on functionalized stainless steel

  • Adel Ben Youssef
  • Nesrine Barbana
  • Mohammad Al-Addous
  • Latifa Bousselmi
Article
  • 8 Downloads

Abstract

In this study, both TiO2 and WO3 were synthetized using controlled hydrolysis followed by dialysis. The produced transparent emulsions were dried into powders. Then, TiO2–WO3 photocatalyst films were deposited by pulsed electrophoretic deposition. The substrates were made of stainless steel pre-functionalized in a conversion bath. The conversion layer played an important role in the adhesion of the composite film into the substrate. Film surface morphology, crystallinity, roughness, thickness, and elemental composition were determined from XRD, optical profilometry and SEM–EDX measurements. The mechanical properties were resolute by nano-indentation test and adhesion was investigated using a scratch test. The photocatalytic decolorization of the Amido Black-10B dye was studied over TiO2–WO3 coatings under UV irradiation. TiO2 film doped 5% WO3 film exhibited the best photocatalytic activity due to its crystalline size and three-phase structure as well as a synergetic effect of TiO2–Fe2O3 and TiO2–WO3. This film showed also good adhesion properties.

Abbreviations

EPD

Electrophoretic deposition

Pulsed EPD

Pulsed electrophoretic deposition

COD

Chemical oxygen demand

AB-10B

Amido black-10B

LC

Load charge

De

Decolorization efficiency

E

Young’s modulus

H

Hardness

SS

Stainless steel

CL

Conversion layer

DC

Direct current

Rms

Roughness

Notes

Acknowledgements

This research was undertaken under the frame of the Contract-Programme between the Center of Water Research and Technologies (CERTE) and the Ministry in charge of the research in Tunisia. It was carried in collaboration with the laboratory of Wastewater and Environment of CERTE, the National High School of Engineers of Tunisia and the German Jordanian University.

Supplementary material

10854_2018_121_MOESM1_ESM.tif (704 kb)
Supplementary material 1 (TIF 703 KB)

References

  1. 1.
    M. Yagub, T.K. Sen, S. Afroze, H. Ang, Adv. Colloid Interface. Sci. 209, 172–184 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Nurdin, L. Ramadhan, D. Darmawati, M. Maulidiyah, D. Wibowo, J. Coat. Technol. Res. 15, 395 (2018)CrossRefGoogle Scholar
  3. 3.
    N. Neti, P. Joshi, J. Coat. Technol. Res. 7, 643 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Omo Ibhadon, P. Fitzpatrick, Catalysts, 3, 189–218, (2013)CrossRefGoogle Scholar
  5. 5.
    R. Vinu, G. Madras, Curr. Org. Chem. 17, 2538–2558 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Ali, Y. Hunge, A. Venkatraman, J. Mater. Sci.: Mater. Electron. 29, 1209–1215 (2018)Google Scholar
  7. 7.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, J. Mater. Sci.: Mater. Electron. 29(18), 6183–6187 (2018)Google Scholar
  8. 8.
    G.R. Bamwenda, H. Arakawa, Appl. Catal. A 210, 181–191 (2001)CrossRefGoogle Scholar
  9. 9.
    D. Spasiano, R. Marotta, P. Fernández-Ibanes, S. Malato, I. Di Somma, Appl. Catal. B 170–171, 90–123, (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Hunge, A. Yadav, M. Mahadik, R. Bulakhe, J. Shim, V. Mathe, C. Bhosale, Opt. Mater. 76, 260–270 (2018)CrossRefGoogle Scholar
  11. 11.
    P. Monk, R. Mortimer, D. Rosseinsky, Electrochromism and Electrochromic Devices (Cambridge University Press, Cambridge, 2007)CrossRefGoogle Scholar
  12. 12.
    C. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)Google Scholar
  13. 13.
    K. Gesheva, A Book Chapter Technology Development and Properties of APCVD WO 3 Electrochromic Thin Films (Nova Science, New York, 2007)Google Scholar
  14. 14.
    Y. Li, S. Long, Q. Liu, Q. Wang, M. Zhang, H. Lv, L. Shao, Y. Wang, S. Zhang, Q. Zuo, S. Liu, M. Liu, Phys. Status Solidi 4, 124–126 (2010)Google Scholar
  15. 15.
    B. Marsen, E. Miller, D. Paluselli, R. Rocheleau, Int. J. Hydrog. Energy 32, 3110–3115 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Blo, M. Carotta, S. Galliera, S. Gherardi, A. Giberti, V. Guidi, C. Malagù, G. Martinelli, M. Sacerdoti, B. Vendemiati, A. Zanni, Sens. Actuators B 103, 213–218 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Szilágyi, L. Wang, P. Gouma, C. Balázsi, J. Madarász, G. Pokol, Mater. Res. Bull. 44, 505–508 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Hunge, A. Yadav, etV. Mathe, Ultrason. Sonochem. 45, 116–122 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Hunge, A. Yadav, M. Mahadik, V. Mathe, C. Bhosale, J. Taiwan Inst. Chem. Eng. 85, 273–281 (2018)CrossRefGoogle Scholar
  20. 20.
    Y.M. Hunge, A.A. Yadav, B.M. Mohite, V.L. Mathe, C.H. Bhosale, J. Mater. Sci.: Mater. Electron. 29(15), 3808–3816 (2017)Google Scholar
  21. 21.
    H. Kim, J. Kim, W. Kim, W. Choi, J. Phys. Chem. C 115(119), 9797–9805 (2011)CrossRefGoogle Scholar
  22. 22.
    C. Linkous, G. Carter, D. Locuson, A. Ouellette, D. Slattery, L. Smitha, Environ. Sci. Technol. 34, 4754–4758 (2000)CrossRefGoogle Scholar
  23. 23.
    X. Luo, F. Deng, L. Min, S. Luo, B. Guo, G. Zeng, C. Au, Environ. Sci. Technol. 47, 7404–7412 (2013)CrossRefGoogle Scholar
  24. 24.
    I. Shiyanovskaya, M. Hepel, J. Electrochem. Soc. 146, 243–249 (1999)CrossRefGoogle Scholar
  25. 25.
    L. Besra, T. Uchikoshi, T. Suzuki, Y. Sakka, J. Am. Ceram. Soc. 91(110), 3154 (2008)CrossRefGoogle Scholar
  26. 26.
    L. Besra, M. Liu, Prog. Mater. Sci. 52, 1–61 (2007)CrossRefGoogle Scholar
  27. 27.
    L. Besra, T. Uchikoshi, T. Suzuki, Y. Sakka, J. Eur. Ceram. Soc. 29, 1837 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Santillán, F. Membrives, N. Quaranta, A. Boccaccini, J. Nanopart. Res. 10, 787 (2008)CrossRefGoogle Scholar
  29. 29.
    C. Lin, T. Yang, Y. Feng, T. Tsung, C. Su, Surf. Coat. Technol. 200, 3184 (2006)CrossRefGoogle Scholar
  30. 30.
    S. Lebrette, C. Pagnoux, P. Abélard, J. Colloid Interface Sci. 280, 400 (2004)CrossRefGoogle Scholar
  31. 31.
    D. Hanaor, M. Michelazzi, P. Veronesi, C. Leonelli, M. Romagnoli, C. Sorrell, J. Eur. Ceram. Soc. 31, 1041–1047 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Laamari, A. Ben Youssef, L. Bousselmi, Water Sci. Technol. 74(12), 424–430 (2016)CrossRefGoogle Scholar
  33. 33.
    N. Barbana, A. Ben Youssef, H. Dhiflaoui, L. Bousselmi, J. Mater. Sci. 53, 3341–3364 (2018)CrossRefGoogle Scholar
  34. 34.
    W. Sun, S. Cui, N. Wei, S. Chen, Y. Liu, D. Wang, J. Alloy Compd. 749, 741–749 (2018)CrossRefGoogle Scholar
  35. 35.
    W. Zhan, H. Ni, R. Chen, Z. Wang, Y. Li, J. Li, Thin Solid Films 548, 299–305 (2013)CrossRefGoogle Scholar
  36. 36.
    E. Valova, J. Georgieva, S. Armyanov, S. Sotiropoulos, A. Hubin, K. Baert, M. Raes, J. Electrochem. Soc. 157(15), D309–D315, (2010)Google Scholar
  37. 37.
    Y. Sun, I. Zhitomirsky, Mater. Lett. 73, 190–193 (2012)CrossRefGoogle Scholar
  38. 38.
    F. Tang, T. Uchikoshi, K. Ozawa, Y. Sakka, J. Eur. Ceram. Soc. 26, 1555–1560 (2006)CrossRefGoogle Scholar
  39. 39.
    L. Bamoulid, M. Maurette, D. De Caro, A.B. Bachir, L. Aries, S. El Hajjaji, F. Benoît-Marquié, F. Ansart, J. Surf. Coat. Technol. 202, 520–526 (2008)CrossRefGoogle Scholar
  40. 40.
    I. Moser, M. GratzeL, Helv. Chim. Acta 65, 1436–1444 (1982)CrossRefGoogle Scholar
  41. 41.
    J. Moser, M. Gratzel, J. Am. Chem. Soc. 105, 6547–6555 (1983)CrossRefGoogle Scholar
  42. 42.
    W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small, 9(11), 140–147, (2013)CrossRefGoogle Scholar
  43. 43.
    R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Appl. Catal. B 187, 47–58 (2016)CrossRefGoogle Scholar
  44. 44.
    F.F. Laatar, H. Moussa, H. Alem, L. Balan, E. Girot, G. Medjahdi, H. Ezzaouia, R. Schneider, Beilstein J. Nanotechnol. 8, 2741–2752 (2017)CrossRefGoogle Scholar
  45. 45.
    I. Naim, M. Kuwata, H. Kamiya, I. Lenggoro, J. Ceram. Soc. Jpn. 117(11), 127 (2009)CrossRefGoogle Scholar
  46. 46.
    B. Dzepina, I. Sigalas, M. Herrmann, R. Nilen, Int. J. Refractory Metals Hard Mater. 36, 126–129 (2013)CrossRefGoogle Scholar
  47. 47.
    S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Mater. Chem. 16, 1709–1717 (2006)CrossRefGoogle Scholar
  48. 48.
    W. Oliver, G. Pharr, J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  49. 49.
    A. Boukhachem, B. Ouni, M. Karyaoui, A. Madani, R. Chtourou, M. Amlouk, Mater. Sci. Semicond. Process. 15, 282–292 (2012)CrossRefGoogle Scholar
  50. 50.
    W. Kwong, H. Qiu, A. Nakaruk, P. Koshy, C. Sorrell, Energy Proc. 34, 617–626 (2013)CrossRefGoogle Scholar
  51. 51.
    C.M. Malengreaux, G.M.-L. Léonard, S.L. Pirard, I. Cimieri, S.D. Lambert, J.R. Bartlett, B. Heinrichs, Chem. Eng. J. 243, 537–548 (2014)CrossRefGoogle Scholar
  52. 52.
    Z. Hai, M. Karbalaeiakbari, C. Xue, H. Xu, E. Solano Minuesa, C. Detavernier, J. Hu, S. Zhuiykov, Compos. Commun. 5, 31–35 (2017)CrossRefGoogle Scholar
  53. 53.
    C. Sotelo-Vazquez, R. Quesada-Cabrera, M. Ling, D. Scanlon, A. Kafizas, P. Thakur, T. Lee, A. Taylor, G. Watson, R. Palgrave, J. Durrant, C. Blackman, I. Parkin, Adv. Funct. Mater. 27, 1605413 (2017)CrossRefGoogle Scholar
  54. 54.
    I. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol. 85, 247–255 (1995) ACrossRefGoogle Scholar
  55. 55.
    A. Müller, I. Kondofersky, A. Folger, D. Fattakhova-Rohlfing, T. Bein, C. Scheu, Mater. Res. Express 4, 016409 (2017)CrossRefGoogle Scholar
  56. 56.
    E. Endoh, J.K. Leland, A. Bard, J. J. Phys. Chem. 90, 6223–6226 (1986)CrossRefGoogle Scholar
  57. 57.
    J.K. Leland, A.J. Bard, J. Phys. Chem. 91, 5076–5085 (1987)CrossRefGoogle Scholar
  58. 58.
    C. Adan, A. Bahamonde, M. Fernandez-García, A. Martínez-, Arias, Appl. Catal. B 72, 11–17 (2007)CrossRefGoogle Scholar
  59. 59.
    J.A. Libera, J.W. Elam, N.F. Sather, T. Rajh, N.M. Dimitrijevic, Chem. Mater. 22, 409–413 (2010)CrossRefGoogle Scholar
  60. 60.
    I. Ismail, Doctoral thesis, INPL-France and CERTE-Tunisia, 2011Google Scholar
  61. 61.
    C. Lin, C. Wu, Z. Onn, J. Hazard. Mater. 54(11), 1033–1039 (2008)CrossRefGoogle Scholar
  62. 62.
    F. Bosc, D. Edwards, N. keller, V. Keller, A. Ayral, Thin Solid Films 495, 272–279, 2006CrossRefGoogle Scholar
  63. 63.
    C. Shifu, C. Lei, G. Shen, C. Gengyu, Powder Technol. 160, 198–202 (2005)CrossRefGoogle Scholar
  64. 64.
    B. Tryba, M. Piszcz, A. Morawski, Photoenergy, Int. J. (2009).  https://doi.org/10.1155/2009/297319 CrossRefGoogle Scholar
  65. 65.
    A. Rampaul, I. Parkin, S. O’Neill, J. DeSouza, A. Mills, N. Elliott, Active Photocatal. Polyhedron, 22(11), 35–44 (2003)CrossRefGoogle Scholar
  66. 66.
    H. Tada, A. Kokrubu, M. Iwasaki, S. Ito, Langmuir, vol. 20, pp. 4665–4670, 2004Google Scholar
  67. 67.
    M. Ismail, L. Bousselmi, O. Zahraa, J. Photochem. Photobiol. A 222, 314–322 (2011)CrossRefGoogle Scholar
  68. 68.
    H. Dhiflaoui, A.B.C. Larbi, in Conference: International Conference Design and Modeling of Mechanical Systems, 2018Google Scholar
  69. 69.
    I. Kern, P. Schwaller, J. Michler, Thin Solid Films 494, 279–286 (2006)CrossRefGoogle Scholar
  70. 70.
    M. Laamari, A. Ben Youssef, L. Bousselmi, J. Adv. Oxid. Technol. 19, 165–170 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adel Ben Youssef
    • 1
    • 2
  • Nesrine Barbana
    • 1
  • Mohammad Al-Addous
    • 3
  • Latifa Bousselmi
    • 1
  1. 1.Center of Water Research and Technologies Technopark of Borj-CedriaSolimanTunisia
  2. 2.National High School of Engineers of TunisiaUniversity of TunisTunisTunisia
  3. 3.Energy Engineering DepartmentGerman Jordanian UniversityAmmanJordan

Personalised recommendations