Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 19889–19900 | Cite as

Electrochemical study of the Li-ion storage process in MWCNT@TiO2–SiO2 composites

  • Próspero Acevedo-Peña
  • René Cabrera
  • Marina E. Rincón-González
Article
  • 56 Downloads

Abstract

Tuning the Li-ion storage mechanism from battery-like to pseudocapacitive is a current strategy to improve the rate capability of intercalation materials. A widespread methodology is decreasing the particle size of the active material, offering larger number of active sites available to storage Li-ions on the surface of the materials. Core@shell composites were obtained by hydrolyzing TTIP and TEOS, at different ratios, over previously dispersed home-made MWCNTs in Isopropanol, in order to obtain a TiO2 shell modified with 1 mol% and 9 mol% of SiO2. This led to a detriment in the anatase crystalline size (TEM and XRD) and an increment in the specific surface area (BET) of the composite, but kept constant the TiO2 shell thickness formed around the MWCNTs. A change in the Li-ion storage process from mostly insertion (at SiO2 1 mol%) to entirely pseudocapacitive (at SiO2 9 mol%), was observed. This allowed a better capacity retention at high cycling rates, when the material was tested between 3 and 1 V vs. Li/Li+. Nonetheless, when the potential windows during cycling was increased from 3 to 0.5 V, the specific capacity of the composite modified with 9 mol% of SiO2, vanished at high cycling rates. The thoroughly EIS characterization in the whole potential window (from 3 to 0.5 V) of the tested half cells, evidenced the enlargement of charge transfer resistance; which was associated to highly reactive –OH groups (FTIR and TGA) present in the composite, promoted by the addition of SiO2 in the shell.

Notes

Acknowledgements

This work has been given the financial support from CONACyT (270810) and UNAM (project UNAM PAPIIT-IN103718). The authors are grateful with Professor Ignacio González from UAM-I and with Laboratorio Nacional de Conversión y Almacenamiento de Energía, for some of the infrastructure required to perform this research.

Supplementary material

10854_2018_119_MOESM1_ESM.docx (367 kb)
Supplementary material 1 (DOCX 366 KB)

References

  1. 1.
    I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sust. Energy Rev. 13, 1513–1522 (2009)Google Scholar
  2. 2.
    R. Amirante, E. Cassone, E. Distaso, P. Tamburrano, Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies. Energy Conv. Manag. 132, 372–387 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)CrossRefGoogle Scholar
  4. 4.
    B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Zhou, B. Wang, Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Rev. 46, 6927–6945 (2017)Google Scholar
  6. 6.
    M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)CrossRefGoogle Scholar
  8. 8.
    E.-S.M. Duraia, S. Niu, G.W. Beall, C.P. Rhodes, Humic acid-derived graphene-SnO2 nanocomposites for high capacity lithium-ion battery anodes. J. Mater. Sci. Mater. Electron. 29, 8456–8464 (2018)CrossRefGoogle Scholar
  9. 9.
    G. Quin, M. Zeng, X. Wu, J. Wen, J. Li, Fabrication of Fe2O3@TiO2 core-shell nanospheres as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 29, 12944–12950 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Li, Y. Song, J. Guo, Q. Ma, X. Dong, W. Tu, Y. Yang, T. Wang, J. Wang, G. Liu, High performance Co3O4/Li2TiO3 composite hollow nanofibers as anode material for Li-ion batteries. J. Mater. Sci. Mater. Electron. 29, 14222–14231 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Brumbarov, J.P. Vivek, S. Leonardi, C. Valero-Vidal, E. Portenkirchner, J. Kunze-Liebhäuser, Oxygen deficient, carbon coated self-organized TiO2 nanotube as anode material for Li-ion intercalation. J. Mater. Chem. A 3, 16469–16477 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Siwińska-Stefańska, B. Kurc, Preparation and application of a titanium dioxide/graphene oxide anode material for lithium-ion batteries. J. Power Sources 299, 286–292 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Minella, D. Versaci, S. Casino, F. Di Lupo, C. Minero, A. Battiato, N. Penazzi, S. Bodoardo, Anodic materials for lithium-ion batteries: TiO2-rGO composites for high power applications. Electrochim. Acta 230, 132–140 (2017)CrossRefGoogle Scholar
  14. 14.
    X.-L. Shi, M.-S. Cao, J. Yuan, X.-Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009)CrossRefGoogle Scholar
  15. 15.
    B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang, M.-M. Lu, H.B. Jin, X.-Y. Fang, W.-Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbonnanotube/silica composites. Carbon 65, 124–139 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Yu, Q. Li, H. Zhang, M. Li, X. Yang, T. Yan, J. Li, Y. He, Design of micronanostructures Mn2O3@CNTs with long cycling for lithium-ion storage. J. Mater. Sci. Mater. Electron. 29, 4675–4682 (2018)Google Scholar
  17. 17.
    A.A. Kashale, K.A. Ghule, K.P. Gattum, V.H. Ingole, S.S. Dhanayat, R. Sharma, Y.-C. Ling, J.-Y. Chang, M.M. Vadiyar, A.V. Ghule, Annealing atmosphere dependant properties of biosynthesized TiO2 anode for lithium ion battery application. J. Mater. Sci. Mater. Electron. 28, 1472–1479 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Chen, Z. Li, S. Shi, C. Song, Z. Jiang, X. Cui, Scalable synthesis of TiO2 crystallites embedded in breadderived carbon matrix with enhanced lithium storage performance. J. Mater. Sci. Mater. Electron. 28, 9206–9220 (2017)CrossRefGoogle Scholar
  19. 19.
    N. Pineda-Aguilar, L.L. Garza-Tovar, E.M. Sánchez-Cervantes, M. Sánchez-Domínguez, Preparation of TiO2(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance. J. Mater. Sci. Mater. Electron. 29, 15464–15479 (2018)CrossRefGoogle Scholar
  20. 20.
    F.-F. Cao, Y.-G. Guo, S.-F. Zheng, X.-L. Wu, L.-Y. Jiang, R.-R. Bi, L.-J. Wan, J. Maier, Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 22, 1908–1914 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Ding, J.S. Chen, X. Wen, One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv. Funct. Mater. 21, 4120–4125 (2011)CrossRefGoogle Scholar
  22. 22.
    H. Zhou, L. Liu, X. Wang, F. Liang, S. Bao, D. Lv, Y. Tang, D. Jia, Multimodal porous CNT@TiO2 nanocables with superior performance in lithium-ion batteries. J. Mater. Chem. A 1, 8525–8528 (2013)CrossRefGoogle Scholar
  23. 23.
    Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, J. Chen, CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries. Nanoscale Res. Lett. 8, 499 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4, 3279 (2014)Google Scholar
  25. 25.
    K. Hemalatha, A.S. Prakash, K. Guruprakash, M. Jayakumar, TiO2 coated carbon nanotubes for electrochemical energy storage. J. Mater. Chem. A 2, 1757–1776 (2014)CrossRefGoogle Scholar
  26. 26.
    M.O. Guler, T. Centinkaya, M. Uysal, H. Akbulut, High efficiency TiO2/MWCNT based anode electrodes for Li-ion batteries. Int. J. Energy Res. 39, 172–180 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Acevedo-Peña, M. Haro, M.E. Rincón, J. Bisquert, G. Garcia-Belmonte, Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes. J. Power Sources 268, 397–403 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Xie, X. Sun, C. Zhou, A.S. Cavanagh, H. Sun, T. Hu, G. Wang, J. Lian, S.M. George, Amorphous ultrathin TiO2 atomic layer deposition films on carbon nanotubes as anodes for lithium ion batteries. J. Electrochem. Soc. 162, A974–A981 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Han, G. Chen, Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO2. Appl. Surf. Sci. 388, 401–405 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Zou, Z. Ma, Q. Wang, Y. Yang, S. Wu, L. Yang, S. Hu, W. Xu, P. Han, R. Zhou, A. Cao, Coaxial TiO2-carbon nanotube sponges as compressible anodes for lithium-ion batteries. J. Mater. Chem. A 4, 7398–7405 (2016)CrossRefGoogle Scholar
  31. 31.
    P. AcevedoPeña, M.E. Rincón, Tailoring TiO2-shell thickness and surface coverage for best performance of multiwalled carbon nanotubes@TiO2 in Li-ion batteries. J. Mater. Sci. Mater. Electron. 27, 2985–2993 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Tang, L. Liu, H. Zhao, D. Jia, X. Xie, Y. Zhang, X. Li, Anatase/rutile titania anchored carbon nanotube porous nanocomposites as superior anodes for lithium ion batteries. CrystEngComm 18, 4489–4494 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Ramírez-Vargas, J.C. Calva, M.S. de la Fuente, O.A. Jaramillo-Quintero, J.R. Herrera-Garza, P. Acevedo-Peña, M.E. Rincón, Effect of titanium content in MWCNT@Sn1−xTi1−xO2 composites on the lithium ion storage process. Chem. Select 2, 6850–6856 (2017)Google Scholar
  34. 34.
    V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRefGoogle Scholar
  35. 35.
    W.J.H. Borghols, D. Lützenkirchen-Hecht, U. Haake, W. Chang, U. Lafint, E.M. Kelder, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, M. Wagemaker, Lithium storage in amorphous TiO2 nanoparticles. J. Electrochem. Soc. 157, A582–A588 (2010)CrossRefGoogle Scholar
  36. 36.
    S. Li, P. Xe, C. Lai, J. Qiu, M. Ling, S. Zhang, Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage. Electrochim. Acta 180, 112–119 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Li, X. Li, W. Li, X. Meng, Y. Yu, X. Sun, Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. Electrochem. Commun. 57, 43–47 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Wagemaker, W.J.H. Borghols, F.M. Mulder, Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4324–4327 (2007)CrossRefGoogle Scholar
  39. 39.
    J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007)CrossRefGoogle Scholar
  40. 40.
    M. Wagemaker, F.M. Mulder, Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 46, 1206–1215 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Lara-Romero, J.C. Calva-Yañez, J. López-Tinoco, G. Alonso-Nuñez, S. Jiménez-Sandoval, F. Paraguay-Delgado, Temperature effect on the synthesis of multi-walled carbon nanotubes by spray pyrolysis of botanical carbon feedstocks: turpentine, α-pinene and β-pinene. Fuller. Nanotub. Carbon Nanostructures 19, 483–496 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Muñiz, M.E. Rincón, P. Acevedo-Peña, The role of the oxide shell on the stability and energy storage properties of MWCNT@TiO2 nanohybrid materials used in Li-ion batteries. Theor. Chem. Acc. 135, 181 (2016)CrossRefGoogle Scholar
  43. 43.
    J.J. Zhang, Z. Wei, T. Huang, Z.L. Liu, A.S. Yu, Carbon coated TiO2–SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries. J. Mater. Chem. A 1, 7360–7369 (2013)CrossRefGoogle Scholar
  44. 44.
    P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B 213, 12–40 (2016)CrossRefGoogle Scholar
  45. 45.
    N. Vicente, M. Haro, D. Cíntora-Juárez, C. Pérez-Vicente, J.L. Tirado, S. Ahmad, G. García-Belmonte, LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim. Acta 163, 323–329 (2015)CrossRefGoogle Scholar
  46. 46.
    K.J. Park, B.B. Lim, M.H. Choi, H.G. Jung, Y.K. Sun, M. Haro, N. Vicente, J. Bisquert, G. García-Belmonte, A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J. Mater. Chem. A 3, 22183–22190 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Haro, T. Song, A. Guerrero, L. Bertoluzzi, J. Bisquert, U. Paik, G. García-Belmonte, Germanium coating boosts lithium uptake in si nanotube battery anodes. Phys. Chem. Chem. Phys. 16, 17930–17935 (2014)CrossRefGoogle Scholar
  48. 48.
    C. Xu, Y. Zeng, X. Rui, J. Zhu, H. Tan, A. Guerrero, J. Toribio, J. Bisquert, G. García-Belmonte, Q. Yan, Amorphous iron oxyhydroxide nanosheets: synthesis, Li storage, and conversion reaction kinetics. J. Phys. Chem. C 117, 17462–17469 (2013)CrossRefGoogle Scholar
  49. 49.
    F. Martínez-Julian, A. Guerrero, M. Haro, J. Bisquert, D. Bresser, E. Paillard, S. Passerini, G. García-Belmonte, J. Phys. Chem. C 118, 6069–6076 (2014)CrossRefGoogle Scholar
  50. 50.
    S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, TiO2-(B) Nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater. 2, 322–327 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Ganapathy, S. Basak, A. Lefering, E. Rogers, H.W. Zandbergen, M. Wagemaker, Improving reversible capacities of high-surface lithium insertion materials—the case of amorphous TiO2. Front. Energy Res. 2, 53 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Próspero Acevedo-Peña
    • 1
  • René Cabrera
    • 2
  • Marina E. Rincón-González
    • 3
  1. 1.CONACyT-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada unidad LegariaIPNMexico CityMexico
  2. 2.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada unidad LegariaIPNMexico CityMexico
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations