Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19588–19600 | Cite as

Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications

  • Sanjib Mondal
  • Anupam Ghosh
  • M. Rizzo Piton
  • Joaquim P. Gomes
  • Jorlandio F. Felix
  • Y. Galvão Gobato
  • H. V. Avanço Galeti
  • B. Choudhuri
  • S. M. M. Dhar Dwivedi
  • M. Henini
  • Aniruddha Mondal
Article
  • 47 Downloads

Abstract

We have investigated the electrical and optical properties of erbium (Er3+) doped TiO2 thin films (Er:TiO2 TFs) grown by sol–gel technique on glass and silicon substrates. The samples were characterized by field emission gun–scanning electron microscopes (FEG–SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and current–voltage measurement techniques. FEG–SEM and AFM images showed the morphological change in the structure of Er:TiO2 TFs and EDX analysis confirmed the Er3+ doped into TiO2 lattice. Broad PL emissions in visible and infrared regions were observed in undoped TiO2 samples and associated to different mechanisms due to the anatase and rutile phases. PL spectra revealed sharp peaks at 525 nm, 565 nm, 667 nm and 1.54 µm which are related to Er3+ emissions in Er:TiO2 samples. The undoped TiO2 and Er:TiO2 TFs based UV-photodetectors were fabricated, and various device parameters were investigated. The doped devices exhibit high photoresponse upon illuminating 350 nm UV light at 2 V bias with faster response time compared to undoped device.

Notes

Acknowledgements

The authors would gratefully acknowledge SAIF IIT Bombay, India, for providing FEG-SEM and EDX facilities, IIC Roorkee, India for providing AFM facility and Department of Physics, N.I.T. Durgapur, CSIR (03(1355)/16/EMR-II), Government of India for financial support. The Brazilian authors acknowledge the financial support from the Brazilian agencies: Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP 2016/10668-7), FAPDF, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

References

  1. 1.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1–21 (2000).  https://doi.org/10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  2. 2.
    X. Chen, S.S. Mao, J. Chem. Rev. 107(7), 2891–2959 (2007).  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  3. 3.
    A.-W. Xu, Y. Gao, H.-Q. Liu, J. Catal. 207, 151–157 (2002).  https://doi.org/10.1006/jcat.2002.3539 CrossRefGoogle Scholar
  4. 4.
    M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, Nanostruct. Mater. 7(7), 709–718 (1996).  https://doi.org/10.1016/S0965-9773(96)00050-5 CrossRefGoogle Scholar
  5. 5.
    N. Savage, B. Chwieroth, A. Ginwalla, B.R. Patton, S.A. Akbar, P.K. Dutta, Sens. Actuators B 79, 17–27 (2001).  https://doi.org/10.1016/S0925-4005(01)00843-7 CrossRefGoogle Scholar
  6. 6.
    T. Xie, A. Rani, B. Wen, A. Castillo, B. Thomson, R. Debnath, T.E. Murphy, R.D. Gomez, A. Motayed, Thin Solid Films 620, 76–81 (2016).  https://doi.org/10.1016/j.tsf.2016.07.075 CrossRefGoogle Scholar
  7. 7.
    M. Selman, Z. Hassan, Sens. Actuators A 221, 15–21 (2015).  https://doi.org/10.1016/j.sna.2014.10.041 CrossRefGoogle Scholar
  8. 8.
    F. Li, Y. Gu, Mater. Sci. Semicond. Process. 15, 11–14 (2012).  https://doi.org/10.1016/j.mssp.2011.04.008 CrossRefGoogle Scholar
  9. 9.
    Y.Y. Hui, P.H. Shih, K.J. Sun, C.F. Lin, Thin Solid Films 515, 6754–6757 (2007).  https://doi.org/10.1016/j.tsf.2007.02.013 CrossRefGoogle Scholar
  10. 10.
    D.S. Lee, A.J. Steckl, Appl. Phys. Lett. 80, 1888–1890 (2002).  https://doi.org/10.1063/1.1461884 CrossRefGoogle Scholar
  11. 11.
    L. Yang, T. Carmon, B. Min, S.M. Spillane, K.J. Vahala, Appl. Phys. Lett. 86, 091114 (2005).  https://doi.org/10.1063/1.1873043 CrossRefGoogle Scholar
  12. 12.
    S.G. Krishnan, P.S. Archana, B. Vidyadharan, I.I. Misnon, B.L. Vijayan, V.M. Nair, A. Gupta, R. Jose, J. Alloys Compd. 684, 328–334 (2016).  https://doi.org/10.1016/j.jallcom.2016.05.183 CrossRefGoogle Scholar
  13. 13.
    A. Ganguly, A. Mondal, B. Choudhuri, T. Goswami, K.K. Chattopadhyay, J. Adv. Sci. Eng. Med. 6, 797–801 (2014).  https://doi.org/10.1166/asem.2014.1566 CrossRefGoogle Scholar
  14. 14.
    H. Ishiguro, R. Nakano, Y. Yao, J. Kajioka, A. Fujishima, K. Sunada, M. Minoshima, K. Hashimoto, Y. Kubota, J. Photochem. Photobiol. Sci. 10, 1825–1829 (2011).  https://doi.org/10.1039/c1pp05192j CrossRefGoogle Scholar
  15. 15.
    J. Reszczyn´ska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Appl. Surf. Sci. 307, 333–345 (2014).  https://doi.org/10.1016/j.apsusc.2014.03.199 CrossRefGoogle Scholar
  16. 16.
    T.K. Srinivasan, B.S. Panigrahi, N. Suriyamurthy, P.K. Parida, B. Venkatraman, J. Rare Earths 33(1), 20 (2015).  https://doi.org/10.1016/S1002-0721(14)60377-X CrossRefGoogle Scholar
  17. 17.
    G. Xing, Z. Zhang. S. Qi, G. Zhou, K. Zhang, Z. Cui, Y. Feng, Z. Shan, S. Meng, Opt. Mater. 75, 102–108 (2018).  https://doi.org/10.1016/j.optmat.2017.10.006 CrossRefGoogle Scholar
  18. 18.
    S. Kumoro, T. Katsumata, H. Kokai, T.M.X. Zhao, Appl. Phys. Lett. 81(25), 4733–4735 (2002).  https://doi.org/10.1063/1.1530733 CrossRefGoogle Scholar
  19. 19.
    L. Skowronski, R. Szczesny, K. Zdunek, Thin Solid Films 632, 112–118 (2017).  https://doi.org/10.1016/j.tsf.2017.04.041 CrossRefGoogle Scholar
  20. 20.
    S. Wang, G. Xia, H. He, K. Yi, J. Shao, Z. Fan, J. Alloys Compd. 431, 287–291 (2007).  https://doi.org/10.1016/j.jallcom.2006.05.091 CrossRefGoogle Scholar
  21. 21.
    M. Ueda, Y. Uchibayashi, S. Otsuka-Yao-Matsuo, T. Okura, J. Alloys Compd. 459, 369–376 (2008).  https://doi.org/10.1016/j.jallcom.2007.04.266 CrossRefGoogle Scholar
  22. 22.
    D.S. Gospodinova, L.P.H. Jeurgens, U. Welzel, L. Bauermann, R.C. Hoffmann, J. Bill, Thin Solid Films 520, 5928–5935 (2012).  https://doi.org/10.1016/j.tsf.2012.03.047 CrossRefGoogle Scholar
  23. 23.
    H.-Y. Liu, W.-H. Lin, W.-C. Sun, S.-Y. Wei, S.-M. Wu, Mater. Sci. Semicond. Process. 57, 90–94 (2017).  https://doi.org/10.1016/j.mssp.2016.10.005 CrossRefGoogle Scholar
  24. 24.
    T. Watanabe, S. Fukayama, M. Miyauchi, A. Fujishima, K. Hashimoto, J. Sol-Gel Sci. Technol. 19, 71–76 (2000).  https://doi.org/10.1023/A:1008762121743 CrossRefGoogle Scholar
  25. 25.
    J. Xing, H. Wei, E.-J. Guo, F. Yang, J. Phys. D 44, 375104 (2011).  https://doi.org/10.1088/0022-3727/44/37/375104 CrossRefGoogle Scholar
  26. 26.
    K. Lv, M. Zhang, C. Liu, G. Liu, H. Li, S. Wen, Y. Chen, S. Ruan, J. Alloys Compd. 580, 614–617 (2013).  https://doi.org/10.1016/j.jallcom.2013.07.161 CrossRefGoogle Scholar
  27. 27.
    D.B. Patel, K.R. Chauhan, S.-H. Park, J. Kim, Mater. Sci. Semicond. Process. 64, 137–142 (2017).  https://doi.org/10.1016/j.mssp.2017.03.024 CrossRefGoogle Scholar
  28. 28.
    W.F. Xiang, P.R. Yang, A.J. Wang, K. Zhao, H. Ni, S.X. Zhong, Thin Solid Films 520, 7144–7146 (2012).  https://doi.org/10.1016/j.tsf.2012.07.110 CrossRefGoogle Scholar
  29. 29.
    M. Zhang, D. Li, J. Zhou, W. Chen, S. Ruan, J. Alloys Compd. 618, 233–235 (2015).  https://doi.org/10.1016/j.jallcom.2014.07.040 CrossRefGoogle Scholar
  30. 30.
    L. Miao, X. Xiao, F. Ran, S. Tanemura, G. Xu, Jpn. J. Appl. Phys. 50, 061101 (2011).  https://doi.org/10.1143/JJAP.50.061101 CrossRefGoogle Scholar
  31. 31.
    A. Ghosh, A. Mondal, A. Das, S. Chattopadhyay, K.K. Chattopadhyay, J. Alloys Compd. 695, 1260–1265 (2017).  https://doi.org/10.1016/j.jallcom.2016.10.254 CrossRefGoogle Scholar
  32. 32.
    R. Lahiri, A. Ghosh, S.M.M. Dhar Dwivedi, S. Chakrabartty, P. Chinnamuthu, A. Mondal, Appl. Phys. A 123, 573 (2017).  https://doi.org/10.1007/s00339-017-1180-2 CrossRefGoogle Scholar
  33. 33.
    D.Y. Lee, J.-T. Kim, J.-H. Park, Y.-H. Kim, I.-K. Lee, M.-H. Lee, B.-Y. Kim, Curr. Appl. Phys. 13, 1301–1305 (2013).  https://doi.org/10.1016/j.cap.2013.03.025 CrossRefGoogle Scholar
  34. 34.
    D.K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, S. Lettieri, J. Phys. Chem. C 121, 9011–9021 (2017).  https://doi.org/10.1021/acs.jpcc.7b00321 CrossRefGoogle Scholar
  35. 35.
    H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, J. Appl. Phys. 75(4), 2042–2047 (1994).  https://doi.org/10.1063/1.356306 CrossRefGoogle Scholar
  36. 36.
    W. Luo, C. Fu, R. Li, Y. Liu, H. Zhu, X. Chen, Small 7(21), 3046–3056 (2011).  https://doi.org/10.1002/smll.201100838 CrossRefGoogle Scholar
  37. 37.
    Y. Yang, C. Wang, L. Xiang, X. Ma, D. Yang, AIP Adv. 4, 047109 (2014).  https://doi.org/10.1063/1.4871188 CrossRefGoogle Scholar
  38. 38.
    G.C. Vásquez, M.A. P-Herrero, D. Maestre, A. Gianoncelli, J. R-Castellanos, A. Cremades, J. G-Calbet, J. Piqueras, J. Phys. Chem. C 119(21), 11965–11974 (2015).  https://doi.org/10.1021/acs.jpcc.5b01736 CrossRefGoogle Scholar
  39. 39.
    S.R. Johannsen, S. Roesgaard, B. Julsgaard, R.A.S. Ferreira, J. Chevallier, P. Balling, S.K. Ram, A.N. Larsen, Opt. Mater. Express 6(5), 1664–1678 (2016).  https://doi.org/10.1364/OME.6.001664 CrossRefGoogle Scholar
  40. 40.
    M. Jiang, C. Zhu, J. Zhou, J. Chen, Y. Gao, X. Ma, D. Yang, J. Appl. Phys. 120, 163104 (2016).  https://doi.org/10.1063/1.4966224 CrossRefGoogle Scholar
  41. 41.
    A. Mondal, A. Ganguly, A. Das, B. Choudhuri, R.K. Yadav, Plasmonic 10(3), 667–673 (2015).  https://doi.org/10.1007/s11468-014-9852-7 CrossRefGoogle Scholar
  42. 42.
    P.B. Pillai, A.N. Corpus Mendoza, M.M. De Souza, G. Bree, D. Jeng, J. Renew. Sustain. Energy 6, 013142 (2014).  https://doi.org/10.1063/1.4866260 CrossRefGoogle Scholar
  43. 43.
    N. Szydlo, R. Poirier, J. Appl. Phys. 51, 3310 (1980).  https://doi.org/10.1063/1.328037 CrossRefGoogle Scholar
  44. 44.
    J.G. Mavroides, D.I. Tchernev, J.A. Kafalas, D.F. Kolesar, Mater. Res. Bull. 10, 1023–1030 (1975).  https://doi.org/10.1016/0025-5408(75)90210-X CrossRefGoogle Scholar
  45. 45.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81(3), 454–456 (2002).  https://doi.org/10.1063/1.1493647 CrossRefGoogle Scholar
  46. 46.
    S.N. Das, K.-J. Moon, J.P. Kar, J.-H. Choi, J. Xiong, T. Lee, J.-M. Myoung, Appl. Phys. Lett. 97, 022103-1–022103-3 (2010).  https://doi.org/10.1063/1.3464287 CrossRefGoogle Scholar
  47. 47.
    P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, J. Phys. D 45, 135102 (2012).  https://doi.org/10.1088/0022-3727/45/13/135102 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sanjib Mondal
    • 1
    • 9
  • Anupam Ghosh
    • 1
  • M. Rizzo Piton
    • 2
  • Joaquim P. Gomes
    • 3
    • 10
  • Jorlandio F. Felix
    • 3
    • 4
  • Y. Galvão Gobato
    • 2
  • H. V. Avanço Galeti
    • 5
  • B. Choudhuri
    • 6
  • S. M. M. Dhar Dwivedi
    • 1
  • M. Henini
    • 7
    • 8
  • Aniruddha Mondal
    • 1
  1. 1.Department of PhysicsNational Institute of Technology DurgapurDurgapurIndia
  2. 2.Departamento de FísicaUniversidade Federal de São Carlos (UFSCar)São CarlosBrazil
  3. 3.Department of PhysicsUniversidade Federal de Viçosa-UFVViçosaBrazil
  4. 4.Institute of PhysicsUniversidade de BrasíliaBrasíliaBrazil
  5. 5.Departamento de Engenharia ElétricaUniversidade Federal de São Carlos(UFSCar)São CarlosBrazil
  6. 6.Department of Electronics and Communication EngineeringNational Institute of Technology NagalandDimapurIndia
  7. 7.School of Physics and AstronomyUniversity of NottinghamNottinghamUK
  8. 8.UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology Laboratories, College of Graduate StudiesUniversity of South Africa (UNISA)PretoriaSouth Africa
  9. 9.Suri Vidyasagar CollegeBirbhumIndia
  10. 10.IFNMG - instituto Federal do Norte de Minas GeraisJanuariaBrazil

Personalised recommendations