Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19567–19577 | Cite as

Ferroelectric Sb-doped PMN-PT crystal: high electromechanical response with true-remanent polarization and resistive leakage analyses

  • Abid Hussain
  • Nidhi Sinha
  • Abhilash J. Joseph
  • Sahil Goel
  • Binay Kumar
Article
  • 36 Downloads

Abstract

In this work, pure and Sb-doped PMN-PT (64:36) crystals with pure perovskite phase have been successfully grown using high temperature solutions technique (or, flux technique), in the vicinity of MPB with the size of the crystals varying from 2 × 2 × 1 mm3 to 7 × 5 × 4 mm3. Various properties like dielectric, piezoelectric, ferroelectric and pyroelectric were investigated for the Sb-doped PMN-PT crystals and have been compared to that of pure PMN-PT crystals. In the dielectric studies, the Curie temperature (Tc) for the pure and doped crystal was found to be 190 °C and 155 °C, respectively. Butterfly loops were traced from which a high value of the piezoelectric coefficient for Sb-doped crystal (d33* = 1972 pm/V) was revealed in the voltage range 250–500 V which was fairly greater than that observed for pure PMN-PT crystal (d33* = 1413 pm/V). The Sb-doped PMN-PT crystals displayed excellent saturated ferroelectric hysteresis loops with higher remanent polarization (Pr) value compared to the pure PMN-PT crystals. The doped crystals also displayed good fatigue resistant characteristic indicating the high ferroelectric quality of the crystals. The true or usable polarization (Ptr) component was extracted using the “True-remanent hysteresis” task. The value of Ptr was found to be 41.53 µC/cm2 suggesting lesser contributions (~ 7%) from non-remanent (non-switchable) components of polarization further confirming the good ferroelectric quality of the Sb-PMN-PT crystals. Also, the resistive-leakage characteristic of the doped crystal was analyzed using Time-dependent compensated hysteresis task. These results demonstrate that the Sb-doped PMN-PT crystal possesses excellent properties to achieve a variety of applications.

Notes

Acknowledgements

We are thankful for the financial support received through the DRDO Project (ARMREB/MAA/2015/163) and DST Project (EMR/2015/000385). Abid Hussain and Sahil Goel would like to thank CSIR for providing the Senior Research Fellowship (File No. 09/045(1413)/2016-EMR-I and 09/045(1406)/2015-EMR-I). Dr. Nidhi Sinha expresses her gratitude to the Principal, SGTB Khalsa College for encouragement and support for research work.

References

  1. 1.
    E. Sun, W. Cao, Prog. Mater Sci. 65, 124 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Geng, Prog. Mater Sci. 68, 1 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Liu, S. Zhang, W. Jiang, W. Cao, Mater. Sci. Eng. R 89, 1 (2015)CrossRefGoogle Scholar
  5. 5.
    B.K. Singh, B. Kumar, Mater. Lett. 63, 625 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Goel, N. Sinha, B. Kumar, Physica E 105, 29 (2019)CrossRefGoogle Scholar
  7. 7.
    H. Yadav, N. Sinha, S. Goel, A. Hussain, B. Kumar, J. Appl. Crystallogr. 49, 2053 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, D.C. Rao, K. Gopalaiah, B. Kumar, J. Appl. Crystallogr. 50, 1498 (2017)CrossRefGoogle Scholar
  9. 9.
    A.J. Joseph, N. Sinha, S. Goel, A. Hussain, B. Kumar, Arab. J. Chem. (2018).  https://doi.org/10.1016/j.arabjc.2018.06.012 CrossRefGoogle Scholar
  10. 10.
    S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)CrossRefGoogle Scholar
  11. 11.
    Y. Cao, G. Sheng, J.X. Zhang, S. Choudhury, Y.L. Li, C.A. Randall, L.Q. Chen, Appl. Phys. Lett. 97, 252904 (2010)CrossRefGoogle Scholar
  12. 12.
    G. Ray, N. Sinha, S. Bhandari, B. Kumar, Mater. Chem. Phys. 159, 107 (2015)CrossRefGoogle Scholar
  13. 13.
    N. Luo, Y. Li, Z. Xia, Q. Li, CrystEngComm 14, 4547 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Fan, L. Zhao, B. Tang, C. Tian, H.-E. Kim, Mater. Sci. Eng. B 99, 183 (2003)CrossRefGoogle Scholar
  15. 15.
    L.C. Lim, M. Shanthi, K.K. Rajan, C.Y.H. Lim, J. Cryst. Growth 282, 330 (2005)CrossRefGoogle Scholar
  16. 16.
    A.K. Singh, D. Pandey, Phys. Rev. B 67, 1 (2003)Google Scholar
  17. 17.
    A. Hussain, N. Sinha, A.J. Joseph, K. Dhankhar, S. Goel, B. Kumar, J. Mater. Sci. Mater. Electron. 28, 14298 (2017)CrossRefGoogle Scholar
  18. 18.
    Z. Kutnjak, J. Petzelt, R. Blinc, Nature 441, 956 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Fang, K. Qian, Z. Chen, N. Yuan, J. Ding, X. Zhao, H. Xu, H. Luo, Funct. Mater. Lett. 07, 1450059 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Long, J. Ling, X. Li, Z. Wang, Z.-G. Ye, Cryst. Growth Des. 9, 657 (2009)CrossRefGoogle Scholar
  21. 21.
    W. Long, X. Chu, Z. Xi, P. Fang, X. Li, W. Cao, J. Rare Earths 89, 1 (2018)Google Scholar
  22. 22.
    X. Wan, X. Tang, J. Wang, H.L.W. Chan, C.L. Choy, H. Luo, Appl. Phys. Lett. 84, 4711 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Yu, Z. Xi, P. Fang, W. Long, X. Li, J. Zhang, A. He, Optik 164, 178 (2018)CrossRefGoogle Scholar
  24. 24.
    L. Luo, M. Dietze, C.H. Solterbeck, H. Luo, M. Es-Souni, J. Appl. Phys. 114, 224112 (2013)CrossRefGoogle Scholar
  25. 25.
    X. Wu, L. Liu, X. Li, Q. Zhang, B. Ren, D. Lin, X. Zhao, H. Luo, Y. Huang, J. Cryst. Growth 318, 865 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Tang, L. Luo, Y. Jia, H. Luo, X. Zhao, H. Xu, D. Lin, J. Sun, X. Meng, J. Zhu, M. Es-Souni, Appl. Phys. Lett. 89, 162906 (2006)CrossRefGoogle Scholar
  27. 27.
    A. Hussain, N. Sinha, S. Bhandari, H. Yadav, B. Kumar, J. Asian Ceram. Soc. 4, 337 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Wu, Y. Chang, B. Yang, S. Zhang, Y. Sun, F. Guo, W. Cao, J. Mater. Sci. Mater. Electron. 26, 1874 (2015)CrossRefGoogle Scholar
  29. 29.
    N. Zhong, P.H. Xiang, D.Z. Sun, X.L. Dong, Mater. Sci. Eng. B 116, 140 (2005)CrossRefGoogle Scholar
  30. 30.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, J. Mater. Sci. Mater. Electron. 29, 13818 (2018)CrossRefGoogle Scholar
  31. 31.
    H. Yadav, N. Sinha, S. Goel, B. Kumar, J. Alloys Compd. 689, 333 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Goel, N. Sinha, A. Hussain, A.J. Joseph, B. Kumar, Ionics. (2018).  https://doi.org/10.1007/s11581-018-2721-1 CrossRefGoogle Scholar
  33. 33.
    S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Mater. Chem. Phys. 202, 56 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Physica E 91, 72 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, B. Kumar, Acta Crystallogr. Sect. B 74, 12 (2018)CrossRefGoogle Scholar
  36. 36.
    K. Batra, N. Sinha, S. Goel, H. Yadav, A.J. Joseph, B. Kumar, Ceram. Int. 767, 1003 (2018)Google Scholar
  37. 37.
    H. Yadav, N. Sinha, S. Goel, B. Singh, I. Bdikin, A. Saini, K. Gopalaiah, B. Kumar, Acta Crystallogr. Sect. B 73, 347 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Goel, N. Sinha, H. Yadav, B. Kumar, P.E. Low-Dimensional Syst. Nanostructures. (2018).  https://doi.org/10.1016/j.physe.2018.08.014 CrossRefGoogle Scholar
  39. 39.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, A. Hussain, B. Kumar, Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.03.003 CrossRefGoogle Scholar
  40. 40.
    S. Goel, N. Sinha, H. Yadav, A. Hussain, B. Kumar, Mater. Res. Bull. 83, 77 (2016)CrossRefGoogle Scholar
  41. 41.
    N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Ceram. Int. 44, 8582 (2018)CrossRefGoogle Scholar
  42. 42.
    S. Horiuchi, Y. Tokura, Nat. Mater. 7, 357 (2008)CrossRefGoogle Scholar
  43. 43.
    R.C.G. Naber, K. Asadi, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Adv. Mater. 22, 933 (2010)CrossRefGoogle Scholar
  44. 44.
    A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Singh, I. Bdikin, B. Kumar, Arab. J. Chem. (2018).  https://doi.org/10.1016/j.arabjc.2018.02.001 CrossRefGoogle Scholar
  45. 45.
    H. Ishiwara, M. Okuyama, Y. Arimoto, Ferroelectric Random Access Memories: Fundamentals and Applications, vol. 93 (Springer, Berlin, 2004).  https://doi.org/10.1007/b12953 CrossRefGoogle Scholar
  46. 46.
    Q. Yun, Y. Bai, J. Chen, W. Gao, A. Bai, S. Zhao, Mater. Lett. 129, 166 (2014)CrossRefGoogle Scholar
  47. 47.
    A.J. Joseph, N. Sinha, S. Goel, A. Hussain, B. Kumar, Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.07.089 CrossRefGoogle Scholar
  48. 48.
    A. Hussain, N. Sinha, K. Dhankhar, A.J. Joseph, B. Kumar, J. Mater. Sci. Mater. Electron. 29, 6403 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Goel, N. Sinha, A. Hussain, A.J. Joseph, H. Yadav, B. Kumar, J. Mater. Sci. Mater. Electron. 29, 13449 (2018)CrossRefGoogle Scholar
  50. 50.
    A.J. Joseph, S. Goel, A. Hussain, B. Kumar, Ceram. Int. 43, 16676 (2017)CrossRefGoogle Scholar
  51. 51.
    A.J. Joseph, B. Kumar, Solid State Commun. 271, 11 (2018)CrossRefGoogle Scholar
  52. 52.
    S. Bhandari, N. Sinha, G. Ray, B. Kumar, CrystEngComm 16, 4459 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Crystal Lab, Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  2. 2.Department of Electronics, SGTB Khalsa CollegeUniversity of DelhiDelhiIndia

Personalised recommendations