Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19558–19566 | Cite as

Construction of Co3O4 nanorods/In2O3 nanocubes heterojunctions for efficient sensing of NO2 gas at low temperature

  • Dongzhi Zhang
  • Di Wu
  • Yuhua Cao
  • Xiaoqi Zong
  • Zhimin Yang
Article
  • 13 Downloads

Abstract

The development of NO2 gas sensor with high sensitivity, low detection limit and high selectivity is highly required. This article reports a NO2 gas sensor based on Co3O4/In2O3 heterojunction structure fabricated by a two-step hydrothermal method. Particularly, morphological and structural analysis of the Co3O4 nanorods/In2O3 nanocubes nanocomposite was examined by SEM, TEM, XRD, EDS and XPS measurements. The Co3O4/In2O3 nanocomposite sensor was tested toward NO2 gas (1–200 ppm) under different operation temperature. The sensor exhibited excellent gas sensing properties for NO2 sensing at an optimal temperature of 150 °C. The corresponding response is 27.9 to 10 ppm NO2 at 150 °C, 1.2 times higher than that of pure In2O3 and 10 times higher than that of pure Co3O4. Moreover, the Co3O4/In2O3 sensor shows sub-ppm level detection ability, good selectivity and long-term stability at low temperature. The enhanced sensing performance can be attributed to the Co3O4/In2O3 heterojunction structure formed at the interfaces of n-type In2O3 nanocubes and p-type Co3O4 nanorods.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51777215), the Key Research & Development Plan Project of Shandong Province (2018GSF117002), the Fundamental Research Funds for the Central Universities of China (18CX07010A), the Open Fund of Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, State Oceanic Administration of China (No. 201801).

References

  1. 1.
    S.A. Vanalakar, V.L. Patil, N.S. Harale, S.A. Vhanalakar, Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens. Actuators B 221, 1195–1201 (2015)CrossRefGoogle Scholar
  2. 2.
    V. Srivastava, K. Jain, At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor. Mater. Lett. 169, 28–32 (2016)CrossRefGoogle Scholar
  3. 3.
    E. Oh, H.Y. Choi, S.H. Jung, S. Cho, J.C. Kim, K.H. Lee, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B 141, 239–243 (2009)CrossRefGoogle Scholar
  4. 4.
    S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, Ce doped NiO nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 114, 28–35 (2018)CrossRefGoogle Scholar
  5. 5.
    L.P. Gao, Z.X. Cheng, Q. Xiang, Y. Zhang, J.Q. Xu, Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sens. Actuators B 208, 436–443 (2015)CrossRefGoogle Scholar
  6. 6.
    X.L. Hu, L.Y. Tian, H.B. Sun, B. Wang, Y. Gao, Highly enhanced NO2 sensing performances of Cu-doped In2O3 hierarchical flowers. Sens. Actuators B 221, 297–304 (2015)CrossRefGoogle Scholar
  7. 7.
    Z.Y. Liu, L.M. Yu, F. Guo, S. Liu, L.J. Qi, Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl. Surf. Sci. 423, 721–727 (2017)CrossRefGoogle Scholar
  8. 8.
    L.J. Qi, L.M. Yu, Z.Y. Liu, F. Guo, Y.Q. Gu, An enhanced optoelectronic NO2 gas sensors based on direct growth ZnO nanowalls in situ on porous rGO. J. Alloys Compd. 749, 244–249 (2018)CrossRefGoogle Scholar
  9. 9.
    B.X. Xiao, F. Wang, C.B. Zhai, P. Wang, C.H. Xiao, Facile synthesis of In2O3 nanoparticles for sensing properties at low detection temperature. Sens. Actuators B 235, 251–257 (2016)CrossRefGoogle Scholar
  10. 10.
    M.Z. Jiao, N.V. Chien, N.V. Duy, N.D. Hoa, N.V. Hieu, On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor. Mater. Lett. 169, 231–235 (2016)CrossRefGoogle Scholar
  11. 11.
    D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal. Appl. Pyrolysis 127, 38–46 (2017)CrossRefGoogle Scholar
  12. 12.
    K.H. Shin, S.S. Park, H.Y. Jeong, Y.W. Noh, D.J. Lee, NO2 sensing properties of bead-like TeO2 nanostructures fabricated using different O2 flow rates. Bull. Korean Chem. Soc. 36, 2688–2692 (2015)CrossRefGoogle Scholar
  13. 13.
    S.X. Shi, F. Zhang, H.M. Lin, Q. Wang, E. Shi, Enhanced triethylamine-sensing properties of P-N heterojunction Co3O4/In2O3 hollow microtubes derived from metal-organic frameworks. Sens. Actuators B 262, 739–749 (2018)CrossRefGoogle Scholar
  14. 14.
    J.W. Ma, H.Q. Fan, H.L. Tian, X.H. Ren, C. Wang, Ultrahigh sensitivity and selectivity chlorine gas sensing of In2O3 hollow microtubules by bio-template method with degreasing cotton. Sens. Actuators B 262, 17–25 (2018)CrossRefGoogle Scholar
  15. 15.
    B.X. Xiao, D.X. Wang, S.L. Song, C.B. Zhai, F. Wang, Fabrication of mesoporous In2O3 nanospheres and their ultrasensitive NO2 sensing properties. Sens. Actuators B 248, 519–526 (2017)CrossRefGoogle Scholar
  16. 16.
    X.M. Xu, P.L. Zhao, D.W. Wang, P. Sun, L. You, Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres. Sens. Actuators B 176, 405–412 (2013)CrossRefGoogle Scholar
  17. 17.
    X.M. Xu, D.W. Wang, J. Liu, P. Sun, Y. Guan, Template-free synthesis of novel In2O3 nanostructures and their application to gas sensors. Sens. Actuators B 185, 32–38 (2013)CrossRefGoogle Scholar
  18. 18.
    O. Bierwagen, J.S. Speck, Plasma- assisted molecular beam epitaxy of Sn-dope d In2O3: Sn incorporation, structural changes, doping limits, and compensation. Phys. Status Solidi A 211, 48–53 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Baqiah, N.B. Ibrahim, M.H. Abdi, S.A. Halim, Electrical transport, microstructure and optical properties of Cr-doped In2O3 thin film prepared by sol-gel method. J. Alloys Compd. 575, 198–206 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Chao, L.H. bing, G.J. zhi, Z. Ying, Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet-In2O3 heterojunction nanofibers. J. Alloys Compd. 741, 908–917 (2018)CrossRefGoogle Scholar
  21. 21.
    M.D. Ding, N. Xie, C. Wang, X.Y. Kou, H. Zhang, Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures. Sens. Actuators B 252, 418–427 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Kim, S. An, C.H. Jin, C. Lee, Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts. Curr. Appl. Phys. 12, 1125–1130 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B 207, 602–613 (2015)CrossRefGoogle Scholar
  24. 24.
    N.D. Chinh, N.V. Toan, V.V. Quang, N.V. Duy, N.D. Hoa, Comparative NO2 gas-sensing performance of the self-heated individual, multiple and networked SnO2 nanowire sensors fabricated by a simple process. Sens. Actuators B 201, 7–12 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.H. Kim, S.J. Kim, Y.J. Kim, Y.S. Shim, S.Y. Kim, Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9, 10453–10460 (2015)CrossRefGoogle Scholar
  26. 26.
    K.K. Sadasivuni, D. Ponnamma, H.U. Ko, H.C. Kim, L.D. Zhai, Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sens. Actuators B 233, 633–638 (2016)CrossRefGoogle Scholar
  27. 27.
    Q.T. Nguyet, N.V. Duy, N.T. Phuong, N.N. Trung, C.M. Hung, Superior enhancement of NO2 gas response using n-p-n transition of carbon nanotubes/SnO2 nanowires heterojunctions. Sens. Actuators B 238, 1120–1127 (2017)CrossRefGoogle Scholar
  28. 28.
    B.W. Zhang, W.Y. Fu, X.W. Meng, A. Ruan, P.Y. Su, H.B. Yang, Synthesis of actinomorphic flower-like SnO2 nanorods decorated with CuO nanoparticles and their improved isopropanol sensing properties. Appl. Surf. Sci. 456, 586–593 (2018)CrossRefGoogle Scholar
  29. 29.
    V.P. Dinesh, A. Sukhananazerin, An emphatic study on role of spill-over sensitization and surface defects on NO2 gas sensor properties of ultralong ZnO@Au heterojunction NRs. J. Alloy Compds. 712, 811–821 (2017)CrossRefGoogle Scholar
  30. 30.
    C.W. Zou, J. Wang, W. Xie, Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites. J. Colloid Interface Sci. 478, 22–28 (2016)CrossRefGoogle Scholar
  31. 31.
    W.Y. Zhang, M. Hu, X. Liu, Y.L. Wei, N. Li, Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor. J. Alloy Compds. 679, 391–399 (2016)CrossRefGoogle Scholar
  32. 32.
    N. Chen, X.G. Li, X.Y. Wang, J. Yu, J. Wang, Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sens. Actuators B 188, 902–908 (2013)CrossRefGoogle Scholar
  33. 33.
    B. Zhang, M. Cheng, G.N. Liu, Y. Gao, L.J. Zhao, Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sens. Actuators B 263, 387–399 (2018)CrossRefGoogle Scholar
  34. 34.
    T.T. Zhou, T. Zhang, J.N. Deng, R. Zhang, Z. Lou, P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance. Sens. Actuators B 242, 369–377 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Song, X.Q. Meng, J.L. Zhang, Y. Zhang, A simple grinding-calcination approach to prepare the Co3O4-In2O3 heterojunction structure with high-performance gas-sensing property toward ethanol. RSC Adv. 6, 105262–105269 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Ali, P. Sunghoon, K. Hyejoon, S.G. Joo, Acetone sensors based on In2O3-Co3O4 composite nanoparticles. J. Nanosci. Nanotechnol. 17, 4087–4090 (2017)CrossRefGoogle Scholar
  37. 37.
    Q.Y. Yang, X.B. Cui, J.Y. Liu, J. Zhao, Y.L. Wang, A low temperature operating gas sensor with high response to NO2 based on ordered mesoporous Ni-doped In2O3. RSC Adv. 40, 2376–2382 (2016)Google Scholar
  38. 38.
    Z.Y. Zhang, L.P. Zhu, Z. Wen, Z.Z. Ye, Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens. Actuators B 238, 1052–1059 (2017)CrossRefGoogle Scholar
  39. 39.
    D. Zhang, Y. Cao, P. Li, J. Wu, X. Zong, Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite. Sens. Actuators B 265, 529–538 (2018)CrossRefGoogle Scholar
  40. 40.
    R. Dong, L.P. Zhang, Z.Y. Zhu, J.D. Yang, X.L. Gao, Fabrication and formaldehyde sensing performance of Fe-doped In2O3 hollow microspheres via a one-pot method. CrystEngComm. 19, 562–569 (2017)CrossRefGoogle Scholar
  41. 41.
    L.P. Huo, X. Yang, Z.W. Liu, X. Tian, T.J. Qi, Modulation of potential barrier heights in Co3O4/SnO2 heterojunctions for highly H2-selective sensors. Sens. Actuators B 244, 694–700 (2017)CrossRefGoogle Scholar
  42. 42.
    B.F. Wu, L.L. Wang, H.Y. Wu, K. Kan, G. Zhang, Templated synthesis of 3D hierarchical porous Co3O4 materials and their NH3 sensor at room temperature. Microporous Mesoporous Mater. 225, 154–163 (2016)CrossRefGoogle Scholar
  43. 43.
    D. Zhang, Z. Wu, X. Zong, Y. Zhang, Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sens. Actuators B 274, 575–586 (2018)CrossRefGoogle Scholar
  44. 44.
    C.W. Na, J.H. Kim, H.J. Kim, H.S. W, A. Gupta, Highly selective and sensitive detection of NO2 using rGO-In2O3 structure on flexible substrate at low temperature. Sens. Actuators B 255, 1671–1679 (2018)CrossRefGoogle Scholar
  45. 45.
    F.B. Gu, R. Nie, D.M. Han, Z.H. Wang, In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B 219, 94–99 (2015)CrossRefGoogle Scholar
  46. 46.
    Z.X. Cheng, L.Y. Song, X.H. Ren, Q. Zheng, J.Q. Xu, Novel lotus root slice-like self-assembled In2O3 microspheres: synthesis and NO2-sensing properties. Sens. Actuators B 176, 258–263 (2013)CrossRefGoogle Scholar
  47. 47.
    W. Yang, P. Wan, X.D. Zhou, J.M. Hu, Additive-free synthesis of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl. Mater. Interfaces 6, 21093–21100 (2014)CrossRefGoogle Scholar
  48. 48.
    H. Kim, S. An, C. Jin, C.M. Lee, Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts. Curr. Appl. Phys. 12, 1125–1130 (2012)CrossRefGoogle Scholar
  49. 49.
    Y.J. Kwon, H.G. Na, S.Y. Kang, M.S. Choi, Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties. Sens. Actuators B 239, 180–192 (2017)CrossRefGoogle Scholar
  50. 50.
    D.G. Ding, Q.Z. Xue, W.B. Lu, Y. Xiong, J.Q. Zhang, Chemically functionalized 3D reticular graphene oxide frameworks decorated with MOF-derived Co3O4: towards highly sensitive and selective detection to acetone. Sens. Actuators B 259, 289–298 (2018)CrossRefGoogle Scholar
  51. 51.
    N.M. Shaalan, M. Rashad, A.H. Moharram, M.A. Abdel-Rahim, Promising methane gas sensor synthesized by microwave-assisted Co3O4 nanoparticles. Mater. Sci. Semicond. Process. 46, 1–5 (2016)CrossRefGoogle Scholar
  52. 52.
    L.D. Xu, X.C. Zhang, P.C. Wang, D.C. Guo, Design and synthesis of p-n conversion indium-oxide-based gas sensor with high sensitivity to NOx at room-temperature. Chem. Sel. 3, 2298–2305 (2018)Google Scholar
  53. 53.
    N.K. Pawar, Gas sensing characteristics of pure and ZnO-modified Fe2O3 thick films. Lect. Notes Electr. Eng. 83, 123–132 (2011)CrossRefGoogle Scholar
  54. 54.
    Y.F. Wang, F.D. Qu, J. Liu, Y. Wang, J.R. Zhou, S.P. Ruan, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuators B 209, 515–523 (2015)CrossRefGoogle Scholar
  55. 55.
    D. Zhang, C. Jiang, P. Li, Y. Sun, Layer-by-Layer self-assembly of Co3O4 nanorod-decorated MoS2 nanosheet-based nanocomposite toward high-performance ammonia detection. ACS Appl. Mater. Interfaces 9, 6462–6471 (2017)CrossRefGoogle Scholar
  56. 56.
    C.L. Zhu, H.L. Yu, Y. Zhang, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y.J. Chen, X.Y. Xue, Fe3O4/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces 4, 665–671 (2012)CrossRefGoogle Scholar
  57. 57.
    C. Liu, L. Zhao, B. Wang, P. Sun, Q. Wang, Y. Gao, X. Liang, T. Zhang, G. Lu, Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit. J. Colloid Interface Sci. 495, 207–215 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information and Control EngineeringChina University of Petroleum (East China)QingdaoChina
  2. 2.Key Laboratory of Unconventional Oil & Gas Development, Ministry of EducationChina University of Petroleum (East China)QingdaoChina

Personalised recommendations