Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19532–19543 | Cite as

Changeover in the third order NLO behaviour of p-nitrophenol doped ammonium hydrogen oxalate hemihydrate crystals

  • Eunice Jerusha
  • S. Shahil Kirupavathy
  • M. Vinolia
  • G. Vinitha
Article
  • 10 Downloads

Abstract

The organic material, p-nitrophenol doped ammonium hydrogen oxalate hemihydrate was grown as single crystals at room temperature by slow evaporation solution growth technique in a constant temperature bath (± 0.01 °C). Doping by p-nitrophenol results in the partial substitution of an anion or a cation and causes changes in the physical properties of ammonium hydrogen oxalate hemihydrate. The grown crystals were characterized by XRD, FT-IR and FT-Raman spectral analyses. The UV–Vis–NIR spectrum was recorded to understand the range of optical transparency and the results showed its suitability for nonlinear optical applications. A shift in maximum absorption and a higher bandgap of 5.158 eV is observed. Dopant inclusion introduces nonlinearity in the sample. Z-scan studies show that the material exhibits saturable absorption rather than reverse saturable absorption as exhibited by its parent. Third order susceptibility and second order hyperpolarizability were calculated. Thermal properties of the crystals indicated that the material does not decompose before melting. The grown title compound shows normal dielectric behaviour when investigated at different frequencies and temperatures. The material is soft and produces etch pits when etched with acetone as etchant.

References

  1. 1.
    S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Review on theoretical aspect of nonlinear optics. Rev. Adv. Mater. Sci. 30, 175–183 (2012)Google Scholar
  2. 2.
    D. Arivuoli, Fundamentals of Nonlinear Optical Materials, vol. 57. (Pramana, Bangalore, 2001), pp. 871–883Google Scholar
  3. 3.
    X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, C. Li, Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2(24), 9040–9047 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Hernández-Gordillo, A.G. Romero, F. Tzompantzi, R. Gómez, Kinetic study of the 4-nitrophenol photooxidation and photoreduction reactions using CdS. Appl. Catal. B, 144, 507–513 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Lai, Z. Chen, Y. Zhou, P. Yang, J. Wang, Z. Chen, Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI). J. Hazard. Mater. 250, 220–228 (2013)CrossRefGoogle Scholar
  6. 6.
    L.N. Wang, X.Q. Wang, G.H. Zhang, X.T. Liu, Z.H. Sun, G.H. Sun, L. Wang, W.T. Yu, D. Xu, Single crystal growth, crystal structure and characterization of a novel crystal: L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP). J. Cryst. Growth 327(1), 133–139 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Chen, Z. Sun, L. Li, S. Wang, Y. Wang, J. Luo, M. Hong, Growth and characterization of a nonlinear optical crystal—2, 6-diaminopyridinium 4-nitrophenolate 4-nitrophenol (DAPNP). J. Cryst. Growth 338(1), 157–161 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Küppers, The crystal structure of ammonium hydrogen oxalate hemihydrate. Acta Crystallogr. B, 29(2), 318–327 (1973)CrossRefGoogle Scholar
  9. 9.
    R. Gandhimathi, R. Dhanasekaran, Structural, thermal, mechanical and z-scan studies on 4-nitrophenol single crystals. Cryst. Res. Technol. 47(4), 385–390 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Krauzman, J.L. Godet, R.M. Pick, H. Poulet, N. Toupry, L. Bosio, M. Debeau, P. Launois, F. Moussa, A pressure-induced incommensurate phase in ammonium hydrogen oxalate hemihydrate. EPL 6(1), 37 (1988)CrossRefGoogle Scholar
  11. 11.
    R.P. Sukiasyan, H.A. Karapetyan, A.M. Petrosyan, L-Lysine dioxalate. J. Mol. Struct. 888(1), 230–237 (2008)CrossRefGoogle Scholar
  12. 12.
    M.S. Pandian, P. Ramasamy, Conventional slow evaporation and Sankaranarayanan–Ramasamy (SR) method grown diglycine zinc chloride (DGZC) single crystal and its comparative study. J. Cryst. Growth 312(3), 413–419 (2010)CrossRefGoogle Scholar
  13. 13.
    W. Kemp, Infrared spectroscopy, in Organic Spectroscopy. (Macmillan Education, London, 1991), pp. 19–99CrossRefGoogle Scholar
  14. 14.
    M.K. Gupta, N. Sinha, B. Kumar, Growth and characterization of new semi-organic l-proline strontium chloride monohydrate single crystals. Physica B 406(1), 63–67 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14(17), 955–957 (1989)CrossRefGoogle Scholar
  16. 16.
    J. Castillo-Torres, A. Hernández, S. González-Martínez, A. Aguirre-López, M.B. Hernandez, J.A. Aguilar-Martínez, Self-focusing in chromium-doped potassium niobate single ceramic crystal. Revista mexicana de física, 52(6), 540–545 (2006)Google Scholar
  17. 17.
    P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, Self-assembled supramolecular structure of 1-methyl piperazinium 4-nitrophenolate 4-nitrophenol monohydrate single crystal: synthesis, growth, thermal and photo physical properties. Spectrochim. Acta A 147, 270–279 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Küppers, Growth of large monocrystals of potassium and ammonium oxalates. J. Cryst. Growth 15(2), 89–92 (1972)CrossRefGoogle Scholar
  19. 19.
    L. Bosio, M. Oumezzine, R. Pick, X-ray evidence for a new phase in ammonium hydrogen oxalate hemihydrate under pressure. Revue de physique appliquée 23(2), 105–109 (1988)CrossRefGoogle Scholar
  20. 20.
    J.C. Anderson, Dielectrics, (Chapman and Hall, London, 1964)Google Scholar
  21. 21.
    W.X. Wang, R.Q. Zhu, X.Q. Fu, W. Zhang, Crystal structure and dielectric property of (p-CH3OC6H4NH3) (18-crown-6)· H2PO4–2H3PO4. Zeitschrift für anorganische und allgemeine Chemie 638(7–8), 1123–1126 (2012)CrossRefGoogle Scholar
  22. 22.
    U. Syamaprasad, C.P.G. Vallabhan, DC electrical conductivity in LiNH4SO4. Solid State Commun. 34(11), 899–903 (1980)CrossRefGoogle Scholar
  23. 23.
    R.N. Kumar, C.P.G. Vallabhan, Electrical conductivity, dielectric constant and phase transitions in pure and doped diammonium hydrogen phosphate. J. Phys. Condens. Matter. 1(35), 6095 (1989)CrossRefGoogle Scholar
  24. 24.
    N.C. Santhakumari, C.P.G. Vallabhan, Electrical conductivity, dielectric properties and phase transition in ethylenediammonium sulphate single crystals. J. Phys. Chem. Solids 53(5), 697–701 (1992)CrossRefGoogle Scholar
  25. 25.
    U. Syamaprasad, C.P.G. Vallabhan, Electrical conductivity and thermally stimulated current in the paraelectric phase of (NH4) 2SO4. Solid State Commun. 38(6), 555–559 (1981)CrossRefGoogle Scholar
  26. 26.
    W.J. Mc Carter, G. Starrs, T.M. Chrisp, P.A.M. Basheer, S.V. Nanukuttan, S. Srinivasan, Conductivity/activation energy relationships for cement-based materials undergoing cyclic thermal excursions. J. Mater. Sci. 50(3), 1129–1140 (2015)CrossRefGoogle Scholar
  27. 27.
    J.J. Gilman, Hardness—A Strength Microprobe. The Science of Hardness Testing and Its Research Applications. (ASM, Metals Park, Ohio, 1973), pp. 51–74Google Scholar
  28. 28.
    P.N. Kotru, A.K. Razdan, B.M. Wanklyn, Microhardness of flux grown pure doped and mixed rare earth aluminates and orthochromites. J. Mater. Sci. 24(3), 793–803 (1989)CrossRefGoogle Scholar
  29. 29.
    M.S. Pandian, K. Boopathi, P. Ramasamy, G. Bhagavannarayana, The growth of benzophenone crystals by Sankaranarayanan–Ramasamy (SR) method and slow evaporation solution technique (SEST): a comparative investigation. Mater. Res. Bull. 47(3), 826–835 (2012)CrossRefGoogle Scholar
  30. 30.
    K. Sangwal, G. Zaniewska, Influence of impurities on the etching of NaCl crystals. J. Mater. Sci. 19(4), 1131–1144 (1984)CrossRefGoogle Scholar
  31. 31.
    P. Singh, M. Hasmuddin, M. Shakir, N. Vijayan, M.M. Abdullah, V. Ganesh, M.A. Wahab, Investigation on structural, optical, thermal, mechanical and dielectric properties of L-proline cadmium chloride monohydrate single crystals: an efficient NLO material. Mater. Chem. Phys. 142(1), 154–164 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsR.M.D. Engineering CollegeKavaraipettaiIndia
  2. 2.Department of PhysicsVelammal Engineering CollegeSurapetIndia
  3. 3.School of Advanced SciencesVIT ChennaiChennaiIndia

Personalised recommendations