Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19509–19516 | Cite as

Nano-sized ZnO supported on poly(triazine imide) nanotube for visible light driven photocatalytic reduction of Cr(VI)

  • Xin Yan
  • Jie Qin
  • Qiang Gao
  • Zimeng Ye
  • Tao Ai
  • Xinghua Su
  • Zhenjun Wang
Article
  • 60 Downloads

Abstract

The poly(triazine imide) (PTI) nanotube/ZnO heterojunction was prepared by two step method. PTI nanotube was synthesized from the condensation of melamine in a salt melt of LiCl–KCl. Then, nano-sized ZnO supported on PTI nanotube was prepared by a chemical precipitation method. The reduction rate of Cr(VI) under visible light irradiation was used to evaluate the activity of photocatalyst. It was found that the PTI/ZnO-1.5 wt% heterojunction exhibits the highest photocatalytic activity, which can reduce almost all Cr(VI) within 120 min. The kinetic constant of reduction reaction with PTI/ZnO-1.5 wt% heterojunction (0.0291 min− 1) is about 6 times as high as that of the PTI (0.00443 min− 1). A possible photocatalytic mechanism was discussed on the basis of the energy-band theory and scavenger experiments. Results show that photo-induced electrons participated in the reduction of Cr(VI) solution over the PTI/ZnO heterojunction. The enhanced photocatalytic activities of heterojunction can be attributed to efficient charge separation and good interfacial contact between PTI and ZnO.

Notes

Acknowledgements

This research was financially supported by the International Project on Scientific and Technological Cooperation in Shaanxi Province of China (No. 2018KW-052), Natural Science Basis Research Plan in Shaanxi Province of China (No. 2018JM5170), the Chang’an University Undergraduates Training Programs of Innovation and Entrepreneurship and the Fundamental Research Funds for the Central Universities of China (No. 300102318402).

Supplementary material

10854_2018_81_MOESM1_ESM.docx (589 kb)
Supplementary material 1 (DOCX 589 KB)

References

  1. 1.
    M.R. Hoffman, S.T. Martin, W. Choi, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  2. 2.
    C. Anupama, A. Kaphle, G. Nagaraju, J. Mater. Sci.:Mater. Electron. 29, 4238–4249 (2018)Google Scholar
  3. 3.
    Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, A. Fujishima, Environ. Sci. Technol. 35, 2365–2368 (2001)CrossRefGoogle Scholar
  4. 4.
    Q. Cheng, C. Wang, K. Doudrick, C.K. Chan, Appl. Catal. B 176–177, 740–748 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Sathishkumar, M. Parthibavarman, V. Sharmila, J. Mater. Sci.:Mater. Electron. 28, 8192–8196 (2017)Google Scholar
  6. 6.
    I. Kazeminezhad, A. Sadollahkhani, J. Mater. Sci.:Mater. Electron. 27, 4206–4215 (2016)Google Scholar
  7. 7.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  8. 8.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397–10401 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358, 15–27 (2015)CrossRefGoogle Scholar
  10. 10.
    G. Mamba, A.K. Mishra, Appl. Catal. B 198, 347–377 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Zhang, F. Liu, Z. Mou, X. Liu, J. Sun, W. Lei, Chem. Commun. 52, 13020–13023 (2016)CrossRefGoogle Scholar
  12. 12.
    M.K. Bhunia, S. Melissen, M.R. Parida, P. Sarawade, J.M. Basset, D.H. Anjum, O.F. Mohammed, P. Sautet, T.L. Bahers, Chem. Mater. 27, 8237–8247 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Litsch, J. Am. Chem. Soc. 136, 1730–1733 (2014)CrossRefGoogle Scholar
  14. 14.
    E.J. McDermott, E. Wirnhier, W. Schnick, K.S. Virdi, C. Scheu, Y. Kauffmann, W.D. Kaplan, E.Z. Kurmaev, A. Moewes, J. Phys. Chem. C 117, 8806–8812 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A 6, 12876–12931 (2018)CrossRefGoogle Scholar
  16. 16.
    L. Lin, C. Wang, W. Ren, H. Ou, Y. Zhang, X. Wang, Chem. Sci. 8, 5506–5511 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Ham, K. Maeda, D. Cha, K. Takanabe, K. Domen, Chem. Asian. J. 8, 218–224 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Schwinghammer, B. Tuffy, M.B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, B.V. Lotsch, Angew. Chem. Int. Ed. 125, 2495–2499 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, Q. Wang, J. Lu, Q. Wang, Y. Cong, Chemosphere 162, 55–63 (2016)CrossRefGoogle Scholar
  20. 20.
    W. Liu, M. Wang, C. Xu, S. Chen, X. Fu, J. Mol. Catal. A 368–369, 9–15 (2013)CrossRefGoogle Scholar
  21. 21.
    W.C. Peng, X.Y. Li, Catal. Commun. 49, 63–67 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Dalton Trans. 42, 8606–8616 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Uma, K. Ravichandran, S. Sriram, B. Sakthivel, Mater. Chem. Phys. 201, 147–155 (2017)CrossRefGoogle Scholar
  24. 24.
    P.Y. Kuang, Y.Z. Su, G.F. Chen, Z. Luo, S.Y. Xing, N. Li, Z.Q. Liu, Appl. Surf. Sci. 358, 296–303 (2015)CrossRefGoogle Scholar
  25. 25.
    S.P. Adhikari, H.R. Pant, H.J. Kim, C.H. Park, C.S. Kim, Ceram. Int. 41, 12923–12929 (2015)CrossRefGoogle Scholar
  26. 26.
    H.L. Gao, S.C. Yan, J.J. Wang, Y.A. Huang, P. Wang, Z.S. Li, Z.G. Zou, Phys. Chem. Chem. Phys. 15, 18077–18084 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Appl. Catal. B 203, 300–313 (2017)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, W. Zhou, L. Dong, X. Sui, J.H. Cai, J. Zuo, Q. Chen, J. Alloys Compd. 682, 738–745 (2016)CrossRefGoogle Scholar
  29. 29.
    D.P. Wu, K. Cao, F.J. Wang, H.J. Wang, Z.Y. Gao, F. Xu, Y.M. Guo, K. Jiang, Chem. Eng. J. 280, 441–447 (2015)CrossRefGoogle Scholar
  30. 30.
    J.G. Xiao, X.L. Zhang, Y.D. Li, Int. J. Hydrogen. Energy 40, 9080–9087 (2105)CrossRefGoogle Scholar
  31. 31.
    X. Shen, T. Zhang, P. Xu, L. Zhang, J. Liu, Z. Chen, Appl. Catal. B 219, 425–431 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Chang, Z. Liu, X. Shen, B. Zhu, D.K. Macharia, Z. Chen, L. Zhang, J. Hazard. Mater. 344, 1188–1197 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Nanoscale 6, 4830–4842 (2014)CrossRefGoogle Scholar
  34. 34.
    Y.Y. Bu, Z.Y. Chen, RSC Adv. 4, 45397–45406 (2014)CrossRefGoogle Scholar
  35. 35.
    X.Y. Yuan, C. Zhou, Q.Y. Jing, Q. Tang, Y.H. Mu, A.K. Du, Nanomaterials 6, 173–185 (2016)CrossRefGoogle Scholar
  36. 36.
    Z. Xing, Y. Chen, C. Liu, J. Yang, J. Xu, Y. Situ, H. Huang, J. Alloys Compd. 708, 853–861 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChang’an UniversityXi’anPeople’s Republic of China

Personalised recommendations