Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19443–19453 | Cite as

Synthesis of popcorn-like α-Fe2O3/3D graphene sponge composites for excellent microwave absorption properties by a facile method

  • Sen Yang
  • Dong-wei Xu
  • Ping Chen
  • Hong-fang Qiu
  • Xiang Guo
Article
  • 23 Downloads

Abstract

Popcorn-like α-Fe2O3/3D graphene sponge (α-F/3DGS) composites have been successfully fabricated by a novel and facile two-step synthetic route combining template-assisted preparation and co-precipitation method for microwave absorption application. The results show that the popcorn-like α-Fe2O3 nanoparticles with an average diameter about 150–200 nm are uniformly encapsulated into the 3DGS exhibiting a porous microstructure with plenty of wrinkles. The composite displays the optimum microwave absorption properties with the minimum reflection loss (RLmin) of − 55.7 dB and the maximum effective microwave absorption bandwidth up to 4.42 GHz (12.30–16.72 GHz) when the thicknesses are merely 1.4 and 1.7 mm, respectively, exhibiting greatly enhanced microwave absorption properties compared to those of some 2D graphene-based microwave absorbing materials. The excellent microwave absorption properties are attributed to the synergistic effect between dielectric loss and magnetic loss mechanism and improvement for the impedance matching behavior. This study paves a way for designing and fabricating lightweight and high performance microwave absorption materials based on 3D graphene composites.

Notes

Acknowledgements

This work was supported by the National Defense key program Fundamental Research program (No. A35201xxxxx).

References

  1. 1.
    Y. Huang, H. Zhang, G. Zeng, Z. Li, J. Alloys Compd. 682, 138 (2016)CrossRefGoogle Scholar
  2. 2.
    S.H. Zhou, Y. Huang, X.D. Liu, J. Yan, X.S. Feng, Ind. Eng. Chem. Res. 57, 5507–5516 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai, Carbon 104, 214 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Lin, J.J. Dai, H.B. Yang, L. Wang, F. Wang, Chem. Eng. J. 334, 1740–1748 (2018)CrossRefGoogle Scholar
  5. 5.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  6. 6.
    Y.J. Li, M. Yu, P.A. Yang, J. Fu, Ind. Eng. Chem. Res. 56, 8872–8879 (2017)CrossRefGoogle Scholar
  7. 7.
    R.L. Yang, B.C. Wang, J.Y. Xiang, C.P. Mu, C. Zhang, F.S. Wen, C. Wang, C. Su, Z.Y. Liu, ACS Appl. Mater. Interfaces 9, 12673–12679 (2017)CrossRefGoogle Scholar
  8. 8.
    X.H. Liang, B. Quan, G.B. Ji, ACS Sustain. Chem. Eng. 5, 10570–10579 (2017)CrossRefGoogle Scholar
  9. 9.
    J.H. Lin, Z.I. Lin, Y.J. Pan, C.L. Huang, C.K. Chen, C.W. Lou, Compos. B 89, 424–431 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C.X. Xiong, L.J. Dong, ACS Appl. Mater. Interfaces 10, 13860–13868 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Moitra, S. Dhole, B.K. Ghosh, M. Chandel, R.K. Jani, M.K. Patra, S.R. Vadera, N.N. Ghosh, J. Phys. Chem. C 121, 21290–21304 (2017)CrossRefGoogle Scholar
  12. 12.
    P.B. Liu, Y. Huang, X. Zhang, Compos. Sci. Technol. 95, 107–113 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.J. Chen, A.B. Zhang, L.C. Ding, Y. Liu, H.L. Lu, Compos. B 108, 386–392 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, J. Mater. Chem. C 1, 765–777 (2013)CrossRefGoogle Scholar
  15. 15.
    Z.Y. Shen, H.L. Xing, Y.T. Zhu, X.L. Ji, Z.F. Liu, L. Wang, J. Mater. Sci. Mater. Electron. 28, 13896–13904 (2017)CrossRefGoogle Scholar
  16. 16.
    T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, X. Yang, J. Mater. Chem. 22, 15190–15197 (2012)CrossRefGoogle Scholar
  17. 17.
    S.H. Zhou, Y. Huang, J. Yan, X.P. Han, X.F. Chen, J. Mater. Sci. Mater. Electron. 28, 18558–18567 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Zhao, Y.L. Zhang, X.X. Wang, H.L. Shi, W.Z. Wang, M.S. Cao, J. Mater. Sci. Mater. Electron. 27, 11518–11523 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Lin, J.J. Dong, H.W. Zong, B. Wen, H.B. Yang, ACS Sustain. Chem. Eng. 6, 10011–10020 (2018)CrossRefGoogle Scholar
  20. 20.
    L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zhang, Carbon 73, 185–193 (2014)CrossRefGoogle Scholar
  21. 21.
    M.A. Worsley, T.Y. Olson, J.R.I. Lee, T.M. Willey, M.H. Nielsen, S.K. Roberts, P.J. Pauzauskie, J. Biener, J.H. Satcher, T.F. Baumann, J. Phys. Chem. Lett. 2, 921–925 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Luo, J.P. Lai, N. Zhang, Y.B. Liu, R. Liu, X.Y. Liu, ACS Sustain. Chem. Eng. 4, 1404–1413 (2016)CrossRefGoogle Scholar
  23. 23.
    P.K. Sahoo, N. Kumar, S. Thiyagarajan, D. Thakur, H.S. Panda, ACS Sustain. Chem. Eng. 6, 7475–7487 (2018)CrossRefGoogle Scholar
  24. 24.
    L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou, J. Ding, V.T. Truong, D. Li, Adv. Mater. 26, 3333–3337 (2014)CrossRefGoogle Scholar
  25. 25.
    H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Adv. Mater. 25, 2219–2223 (2013)CrossRefGoogle Scholar
  26. 26.
    Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Nat. Mater. 10, 424–428 (2011)CrossRefGoogle Scholar
  27. 27.
    D. Huang, X.L. Li, S. Wang, G.L. He, W.K. Jiang, J. Hu, Y.J. Wang, N.T. Hu, Y.F. Zhang, Z. Yang, Sens. Actuators B 252, 956–964 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Santoro, M. Kodali, S. Kabir, F. Soavi, A. Serov, P. Atanassov, J. Power Sources 356, 371–380 (2017)CrossRefGoogle Scholar
  29. 29.
    X.H. Cao, Z.Y. Yin, H. Zhang, Energy Environ. Sci. 7, 1850–1865 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 7, 3163–3168 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutiérrez, F.d. Monte, Chem. Soc. Rev. 42, 794–830 (2013)CrossRefGoogle Scholar
  32. 32.
    G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Chem. Mater. 23, 1587–1593 (2011)CrossRefGoogle Scholar
  33. 33.
    Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28, 486–490 (2016)CrossRefGoogle Scholar
  34. 34.
    J.Y. Fu, W. Yang, L.Q. Hou, Z. Chen, T. Qiu, H.T. Yang, Y.F. Li, Ind. Eng. Chem. Res. 56, 11460–11466 (2017)CrossRefGoogle Scholar
  35. 35.
    S.-M. Yoon, W.M. Choi, H. Baik, H.-J. Shin, I. Song, M.-S. Kwon, J.J. Bae, H. Kim, Y.H. Lee, J.-Y. Choi, ACS Nano 6, 6803–6811 (2012)CrossRefGoogle Scholar
  36. 36.
    H. He, C. Gao, ACS Appl. Mater. Interfaces 2, 3201–3210 (2010)CrossRefGoogle Scholar
  37. 37.
    D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon 47, 145–152 (2009)CrossRefGoogle Scholar
  38. 38.
    R.J. Tseng, C.O. Baker, B. Shedd, J.X. Huang, R.B. Kaner, J.Y. Ouyang, Y. Yang, Appl. Phys. Lett. 90, 053101 (2007)CrossRefGoogle Scholar
  39. 39.
    M. Cochet, W.K. Maser, A.M. Benit, M.A. Callejas, M.T. Mart_ınez, J.M. Benoit, J. Schreiber, O. Chauvet, Chem. Commun. 37, 1450–1451 (2001)CrossRefGoogle Scholar
  40. 40.
    J.T. Feng, Y.H. Hou, Y.C. Wang, L.C. Li, ACS Appl. Mater. Interfaces 9, 14103–14111 (2017)CrossRefGoogle Scholar
  41. 41.
    C. Chen, J.B. Xi, E.Z. Zhou, C. Gao, L. Peng, Z.C. Chen, Nano-Micro Lett. 10, 26 (2018)CrossRefGoogle Scholar
  42. 42.
    H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, X.Y. Tian, J. Mater. Chem. A 1, 8547–8552 (2013)CrossRefGoogle Scholar
  43. 43.
    B. Ahmmad, K. Leonard, M.S. Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo, Y. Kuroda, Adv. Powder Technol. 24, 160–167 (2013)CrossRefGoogle Scholar
  44. 44.
    Y.Z. Wu, J. Ward-Bond, D.L. Li, S.H. Zhang, J.F. Shi, Z.Y. Jiang, ACS Catal. 8, 5664–5674 (2018)CrossRefGoogle Scholar
  45. 45.
    Y.W. Zhu, S. Murali, M.D. Stoller, K. J.Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, Science 332, 1537–1541 (2011)CrossRefGoogle Scholar
  46. 46.
    K. Chen, Z.G. Chai, C. Li, L.R. Shi, M.X. Liu, Q. Xie, Y.F. Zhang, D.S. Xu, A. Manivannan, Z.F. Liu, ACS Nano 10, 3665–3673 (2016)CrossRefGoogle Scholar
  47. 47.
    L. Wang, X.Y. Bai, M. Wang, J. Mater. Sci. Mater. Electron. 29, 3381–3390 (2018)CrossRefGoogle Scholar
  48. 48.
    H.X. Pan, X.W. Yin, J.M. Xue, L.F. Cheng, L.T. Zhang, Carbon 107, 36–45 (2016)CrossRefGoogle Scholar
  49. 49.
    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26, 3484–3489 (2014)CrossRefGoogle Scholar
  50. 50.
    M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, J. Mater. Chem. A 2, 10540–10547 (2014)CrossRefGoogle Scholar
  51. 51.
    X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, L. Guo, J. Phys. Chem. C 120(38), 22019–22027 (2016)CrossRefGoogle Scholar
  52. 52.
    X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Appl. Phys. Lett. 95, 163108 (2009)CrossRefGoogle Scholar
  53. 53.
    Z.C. Shi, R.H. Fan, Z.D. Zhang, L. Qian, M. Gao, M. Zhang, ,L.T. Zheng, X.H. Zhang, L.W. Yin, Adv. Mater. 24, 2349–2352 (2012)CrossRefGoogle Scholar
  54. 54.
    B. Zhao, G. Shao, B. Fan, W. Zhao, S. Zhang, K. Guan, R. Zhang, J. Mater. Chem. C 3, 10862–10869 (2015)CrossRefGoogle Scholar
  55. 55.
    P. Toneguzzo, O. Acher, G. Viau, F. Fiévet-Vincent, F. Fievet, J. Appl. Phys. 81, 5546–5548 (1997)CrossRefGoogle Scholar
  56. 56.
    J.Y. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X.G. Yue, Z.H. Jiang, Nanoscale 8, 8899–8909 (2016)CrossRefGoogle Scholar
  57. 57.
    L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, L. Zhang, J. Phys. Chem. C 117, 19701–19711 (2013)CrossRefGoogle Scholar
  58. 58.
    L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, C. Chen, Sci. Rep. 5, 9298 (2015)CrossRefGoogle Scholar
  59. 59.
    Y. Zuo, J.H. Luo, M.L. Cheng, K. Zhang, R.L. Dong, J. Alloys Compd. 744, 310–320 (2018)CrossRefGoogle Scholar
  60. 60.
    H. Zhang, M. Hong, P. Chen, A. Xie, Y. Shen, J. Alloys Compd. 665, 381–387 (2016)CrossRefGoogle Scholar
  61. 61.
    N. Zhang, Y. Huang, M. Zong, X. Ding, S.P. Li, M.Y. Wang, Ceram. Int. 42, 18879–18886 (2016)CrossRefGoogle Scholar
  62. 62.
    R.W. Shu, W.J. Li, X. Zhou, D.D. Tian, G.Y. Zhang, Y. Gan, J.J. Shi, J. He, J. Alloys Compd. 743, 163–174 (2018)CrossRefGoogle Scholar
  63. 63.
    H.L. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, J. Mater. Chem. C 3, 5056–5064 (2015)CrossRefGoogle Scholar
  64. 64.
    G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio, Science 317, 219–222 (2007)CrossRefGoogle Scholar
  65. 65.
    S.L. Sun, Q. He, S.Y. Xiao, Q. Xu, X. Li, L. Zhou, Nat. Mater. 11, 426–431 (2012)CrossRefGoogle Scholar
  66. 66.
    Z. Wang, L. Wu, J. Zhou, Z. Jiang, B. Shen, Nanoscale 6, 12298–12302 (2014)CrossRefGoogle Scholar
  67. 67.
    B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, J. Mater. Chem. A 3(19), 10345–10352 (2015)CrossRefGoogle Scholar
  68. 68.
    H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, L.F. Cheng, ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sen Yang
    • 1
  • Dong-wei Xu
    • 1
  • Ping Chen
    • 1
  • Hong-fang Qiu
    • 1
  • Xiang Guo
    • 1
  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina

Personalised recommendations